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Abstract

In human society, successful social interactions often hinge upon the ability to accurately estimate other’s perspectives, a skill that 
necessitates integrating contextual cues. This study investigates the neural mechanism involved in this capacity through a preference 
estimation task. In this task, participants were presented with the target’s face and asked to predict their preference for a given item. 
Preference estimation accuracy was assessed by calculating the percentage of correct guesses, where participants’ responses matched 
the target’s preferences on a 4-point Likert scale. Our research demonstrates that, based on inter-subject representational similarity 
analysis (IS-RSA), the multi-voxel patterns in the medial prefrontal cortex (mPFC) and the anterior insula (AI) predict individual differ-
ences in preference estimation accuracy. Specifically, the varying behavioural tendencies among participants in inferring others’ 
preferences were mirrored in the multivariate neural representations within these regions, both of which are known for their involve-
ment in individual differences in interoception and context-dependent interpretation of ambiguous facial emotion. These findings 
suggest that mPFC and AI play pivotal roles in accurately estimating others’ preferences based on minimal information and provide 
insights that transcend the limitations of traditional univariate approaches by employing multivariate pattern analysis.
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Introduction
In daily life, people often form impressions of others and make 
judgments based on highly limited information, which is referred 
to as ‘thin-slicing’ in psychology (Ambady and Rosenthal 1992). Such 
an ability demonstrates how people use fast and automatic pro-
cesses to make decisions, such as interpreting nonverbal cues like 
facial expressions, gestures, and tone of voice during interactions. 
For example, reading a text about a person’s major life events can 
predict their personality (Pennebaker and King 1999), and simply 
observing someone’s room can accurately judge their personality 
(Gosling et al. 2002). Moral judgments can be made from brief visual 
scenes (De Freitas and Hafri 2024), and after watching a 60-second 
video of a social interaction, one can predict the other person’s 
socioeconomic status (Kraus and Keltner 2009).

Among others, facial cues are particularly integral to social infer-
ence, serving as a rich source of insight into an individual’s traits 
(Zebrowitz et al. 2002, Frith and Frith 2012). Previous studies have 
shown that, in less than 100ms, one can infer how trustworthy 
someone is (Willis and Todorov 2006), predict a company’s financial 
performance by looking at the CEO’s face (Rule and Ambady 2008b), 
accurately assess someone’s sexual orientation (Rule and Ambady 
2008a), and predict the outcomes of political candidates in elections 
(Todorov et al. 2005).

Numerous psychological literatures highlight the significance of 
intuitive social inferences, in which individuals are tasked with 
inferring affective states or psychological traits of targets. These 

tasks encompass estimating transient emotional states as interpreted 
through facial expressions (Frith and Frith 2012), understanding 
intentions of approach and avoidance (Jones and Kramer 2021), and 
discerning psychological traits such as trustworthiness (Van’t Wout 
and Sanfey 2008, Chwe and Freeman 2023), cooperativeness (Tognetti 
et al. 2013), intelligence (Zebrowitz et al. 2002), and preferences (North 
et al. 2010, 2012, Kang et al. 2013, Eggleston et al. 2015, Pollmann and 
Scheibehenne 2015, Vijayakumar et al. 2021). These intuitive social 
inferences, based on facial information, are integral components of 
understanding others, including empathy and the theory of mind 
(Quesque and Rossetti 2020), yet the exact neural mechanisms 
behind these instinctual inferences require further exploration.

What factors determine the accuracy of predicting others’ traits 
based on limited information, such as a face? Research conducted 
to answer this question so far suggests that higher emotional rec-
ognition ability (Jaksic and Schlegel 2020) and intuitive over analyt-
ical thinking (Albrechtsen et al. 2009) are associated with higher 
accuracy in thin-slicing. Compared to the vast psychological 
research on thin-slicing, studies on the neurological mechanisms 
related to this phenomenon are relatively scarce, especially regard-
ing the biological factors that differentiate individuals with high 
and low accuracy in thin-slicing. Research that identifies the neu-
rological characteristics underlying individual differences in 
thin-slicing accuracy is expected to provide important insights into 
distinguishing innate from acquired factors in this phenomenon.

Our laboratory has previously reported on the significant role of 
the dorsomedial prefrontal cortex (dmPFC) communicating with 
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the temporoparietal junction (TPJ) in predicting others’ preferences 
based on facial features and the associated individual differences 
in accuracy (Kang et al. 2013, Park et al. 2018). Prior research in 
social cognition suggests that the dmPFC, in concert with the TPJ, 
forms the core of the mentalizing network (Schnell et al. 2011, 
Dvash and Shamay-Tsoory 2014). Meta-analyses indicate that 
dmPFC activities are engaged when observing others receiving 
painful stimuli (Lamm et al. 2011), estimating others’ thoughts 
through perspective-taking, and inferring their emotional states 
(Schurz et al. 2014, 2021), emphasizing its role in abstract repre-
sentation based on external information for generating appropriate 
affective and cognitive behaviours (Kim 2020). Beyond mentalizing 
studies, the dmPFC is involved in generating new actions based on 
prediction errors and learning abstract rules (Seo et al. 2014) and 
representing other-regarding values for prosocial decisions (Sul et 
al. 2015). Increased dmPFC activity during the observation of social 
scenarios correlates with a higher frequency of social interactions 
(Powers et al. 2016). Similarly, dmPFC activities are instrumental in 
predicting others’ behaviour (Amodio and Frith 2006) and showed 
a positive correlation with the accuracy of preference estimation 
based on facial appearance (Kang et al. 2013).

Multivariate pattern analysis (MVPA) is a statistical technique 
used to analyse brain imaging data. Unlike traditional univariate 
analysis, which examines activity of one voxel at a time, MVPA ana-
lyzes patterns of activity across multiple voxels simultaneously, 
making it more sensitive to detecting subtle differences between 
psychological states (Norman et al. 2006). Supporting evidence 
shows that multivariate analyses reveal unique activity patterns 
in brain regions that are commonly activated across conditions in 
univariate analyses (Woo et al. 2014, Krishnan et al. 2016, Wake 
and Izuma 2017, Kim and Kim 2021). Considering the differences 
between these two methods, it is necessary to determine whether 
the role of the dmPFC, linked to individual differences in the accu-
racy of predicting others’ preferences, remains valid in both uni-
variate and multivariate analyses, or if there are specific differences 
between the two methods related to these individual differences.

In this study, we delve into the neural mechanisms underlying 
individual variations in preference estimation accuracy. First, we 
aimed to replicate the findings regarding the role of the dmPFC in 
accurately evaluating other’s preferences, as previously reported 
by Kang et al. (2013). Secondly, we opted to capitalize on recent 
advances in MVPA techniques, renowned for their capability to map 
hidden neural representations of psychological traits and motiva-
tions that could not be captured by conventional univariate 
approaches (Kragel et al. 2021, Contreras-Huerta et al. 2023). To 
achieve this, we employed a preference estimation task, where 
participants were shown an image of a person followed by an image 
of a food or movie poster (Kang et al. 2013) and asked to infer the 
preference of the person to the image solely based on their facial 
appearances. Our study leveraged inter-subject representational 
similarity analysis (van Baar et al. 2019) to identify the specific 
brain regions where activity patterns are correlated with individual 
variability in the accuracy of preference estimation.

Materials and methods
Participants
A total of 39 healthy female participants, aged between 22 and 44 
(all females; mean age = 30.82), were recruited for this study. The 
decision to recruit only female participants was based on prior 
research (Carney et al. 2007), which suggests that female partici-
pants tend to make more accurate thin-slice judgments compared 
to male participants. By selecting a single gender cohort, we sought 

to minimize potential gender effects. All participants were right-
handed, had no visual impairments, and reported no history of 
psychiatric or neurological conditions. However, due to artefacts 
in neuroimaging data, one participant’s data was excluded. Thus, 
final analyses were conducted on 38 participants (age range: 22–44, 
mean age = 30.56). To determine whether our study had sufficient 
statistical power, we conducted a Bayesian power analysis. Unlike 
traditional frequentist power analysis, which assumes a fixed effect 
size, Bayesian approaches incorporate empirical uncertainty to 
provide a more robust and realistic assessment of power (Du and 
Wang 2016, Kruschke and Liddell 2018). Based on our observed 
effect size (r = .566) and a final sample size (N = 38), the probability 
that the true effect size exceeds r = .34 is 95.27%. This threshold of 
r = .34 was derived from a transformation of the effect size reported 
in Kang et al. (2013). These results suggest that our study was 
well-powered to detect meaningful effects within the expected 
range, thereby confirming the robustness of the hypothesized rela-
tionship. All participants provided informed consent, in accordance 
with the guidelines set by the Institutional Review Board of Korea 
University. These participants performed a facial expression rec-
ognition task prior to this task, and these data have already been 
published elsewhere (Kim et al. 2022).

Procedure
Upon arrival, participants’ eligibility for MRI scanning was verified. 
Before scanning, participants were given instructions and com-
pleted a couple of practice trials to familiarize themselves with the 
experimental paradigm. The primary task was the preference esti-
mation paradigm adapted from Kang et al. (2013), designed to 
investigate neural mechanisms associated with inferring prefer-
ences (e.g., for movie posters or food items) based on facial photo-
graphs of targets. The photos of targets were collected from an 
independent group of eight individuals (four males, four females; 
all Korean) who had provided their preferences for five distinct food 
items and five distinct movie stimuli.

Following the methodology established by Kang et al., we 
selected food and movie posters as stimuli to best allow partici-
pants to estimate others’ preferences accurately. In their study, 
various item categories were evaluated, including movies, books, 
bags, shoes, and foods, to determine which categories would best 
facilitate accurate preference estimation. Items were selected 
based on preference ratings, focusing on those with intermediate 
levels of preference and high variability, to minimize overlap 
between general population preferences and individual target pref-
erences. Their findings indicated that participants could reliably 
estimate preferences for movies and foods, while accuracy was 
lower for other categories such as books and bags. This suggests 
that, in certain domains, participants were able to accurately esti-
mate others’ preferences, even with very brief exposure to limited 
information, such as facial appearance. Given these considerations, 
we adopted food and movie posters as stimuli in our study, aligning 
with prior research demonstrating that these categories are suit-
able for assessing accuracy in estimating others’ preferences.

To enhance participants’ engagement in estimating the targets’ 
preferences, they were informed that monetary incentives would 
be given based on their relative performance. Notably, no partici-
pant had prior familiarity with any of the photo targets. Before the 
MRI scanning, participants also provided facial photographs for 
later use in their own personal preference estimation condition.

During the single MRI session, which lasted approximately 
18min, participants performed the preference estimation task (Fig. 
1), with trials presented in event-related paradigms. Each trial 
began with a 3-second display of a facial photo (either of the 
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participant self or a target), followed by a jittered fixation interval 
lasting 2–4seconds. Subsequently, an item was displayed, and par-
ticipants provided their own preference (self-trial) or guessed the 
targets’ preference (target-trial) for the depicted item using a 
4-point Likert scale (from ‘strongly dislike’ to ‘strongly like’) within 
a 3-second response window. Immediately after the response, par-
ticipant’s choice was displayed on the screen for 0.5seconds. It is 
important to note that the ‘participant’s choice’ here refers to the 
predictions and preference inferences made solely by the partici-
pants, rather than feedback on the actual preferences of the tar-
gets. No information about the actual preferences of the 8 targets 
was provided to the participants at any point in the study. There-
fore, there was no chance for participants to learn or adjust their 
predictions based on feedback. Each prediction was made inde-
pendently on each trial, based solely on the participants’ judgement 
without any external information influencing subsequent estima-
tions. The MRI session comprised 10 self-trials and 80 target-trials 
(i.e., facial photo (9) × item (10)). Trials were presented in a pseudo- 
random order. In the post-scan session, participants were debriefed 
about the study’s objectives and compensated with 40,000 KRW 
(approximately $38).

Behavioural data analysis
We measured preference estimation accuracy by assessing the pro-
portion of trials where participants’ estimations precisely matched 
the targets’ stated preferences. Only exact matches were considered 
correct when calculating the accuracy score. For instance, if a target 
rated an item as 3 (like) and a participant estimated it as 2 (dislike), 
it was marked incorrect. Similarly, if a target rated an item as 3 (like) 
and the estimation was 4 (highly like), despite both being positive, 
the trial was still deemed incorrect. Overall, the accuracy of partici-
pants’ estimation was significantly above the chance level (0.25) on 
average (Fig. 2), meaning that participants can infer others’ preference 
from their faces better than random guessing (M = 0.31, t

37( ) = 5.91, P 
< .001). Furthermore, we conducted supplementary analyses covering 
various aspects, including baseline preferences for movie and food 
stimuli (Supplementary Fig. S1), preferences by target gender 

(Supplementary Fig. S2), participants’ accuracy rates for each target 
(Supplementary Fig. S3), accuracy differences between movie and 
food stimuli (Supplementary Fig. S4), and performance comparisons 
between high and low accuracy groups (Supplementary Fig. S5).

fMRI data acquisition
All the neuroimaging data were collected from a 3T Siemens Trio 
MRI scanner (MAGNETOM Trio, A Tim System; Siemens AG, Erlan-
gen, Germany) with a 12-channel head coil located at the Korea 
University Brain Imaging Center. We acquired functional images 
using gradient echo-planar images (EPI) with Blood Oxygenation 
Level-Dependent contrast (TR = 2000ms; TE = 30ms; flip angle = 
90°; FOV = 240mm; 3 × 3 × 3mm in-plane resolution; 80 × 80 matrix 
size; and 36 slices with no gap with interleaved sequence), and 
high-resolution structural images (TR = 1900ms; TE = 2.52ms; flip 
angle = 9°; 1 × 1 × 1mm in-plane resolution; and 256 × 256 matrix 
size). The experiment task was presented through an MR-com-
patible LCD monitor mounted on a head coil (refresh rate: 60Hz; 
display resolution: 640 × 480 pixels; viewing angle: 30°) operating 
on MATLAB 2009b with Cogent 2000 stimulus presentation 
software.

Image preprocessing
The functional data were preprocessed by using the default pre-
processing pipelines of the CONN toolbox 2018b (www.nitrc.org/
projects/conn, RRID: SCR_009550; Whitfield-Gabrieli and Nie-
to-Castanon 2012). The images were first realigned and unwarped, 
centred to (0, 0, 0) coordinates, and slice-time corrected in sequen-
tial order. The resulting images were then spatially normalized to 
the standard Montreal Neurological Institute 152 reference tem-
plate resampled to 2mm isotropic voxels. Finally, the normalized 
images were then smoothed with an 8-mm full-width at half-max-
imum Gaussian kernel.

Neuroimaging data analysis: Univariate approach
In the first-level analyses, we processed the neuroimaging data 
utilizing SPM12 software (Wellcome Department of Imaging 

Figure 1.  Task design. In the preference estimation task, the participants were asked to infer the target’s preference for a given item. A target was 
presented during the face phase for 3 s in the target-trials, and then an item was displayed. During the item phase, the participants had to perceive an 
item and rate how much the target would favour this specific item on a 4-point scale. When the participants answered, their response was shown on 
the screen for 0.5 s.

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/20/1/nsaf051/8131468 by Seoul Science Library user on 20 N

ovem
ber 2025

https://academic.oup.com/scan/article-lookup/10.1093/scan/nsaf051/#supplementary-data
https://academic.oup.com/scan/article-lookup/10.1093/scan/nsaf051/#supplementary-data
https://academic.oup.com/scan/article-lookup/10.1093/scan/nsaf051/#supplementary-data
https://academic.oup.com/scan/article-lookup/10.1093/scan/nsaf051/#supplementary-data
https://academic.oup.com/scan/article-lookup/10.1093/scan/nsaf051/#supplementary-data
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn


4  |  Kang et al.

Neuroscience, London, United Kingdom). Individual participant 
data were modelled using a general linear model (GLM), which 
incorporated five regressors: (i) the self-trial during the face phase, 
(ii) the target-trial during the face phase, (iii) the self-trial during 
the item phase, (iv) the target-trial during the item phase, and (v) 
button response onset. Additionally, we accounted for head-motion 
artefacts by including six head-motion regressors as covariates of 
no interest.

To identify brain regions associated with individual preference 
estimation performance, we performed a linear regression analysis, 
incorporating the contrast images derived from target-trials versus 
self-trials during the item phase and individual accuracy scores as 
covariates. A parallel analysis was applied to the data obtained 
during the face phase.

To precisely examine our primary hypothesis—that there exists 
a correlation between the activation of the dmPFC and the partici-
pants’ accuracy scores, as suggested by previous research utilizing 
the same paradigm (Kang et al. 2013)—we utilized a dmPFC binary 
mask. This mask was derived from a meta-analysis by de la Vega et 
al. (2016), which segmented the medial prefrontal cortex (mPFC) into 
nine distinct subregions based on each region’s functional coactiva-
tion maps. Our methodological choice was guided by our focused 
research question, leading us to opt for a univariate approach exclu-
sively targeting the dmPFC subregion [A1], excluding other mPFC 
subregions from our analysis. This approach was not only aimed at 
confirming previous findings but also at providing a rigorous test of 
the role this particular subregion plays in the task at hand, thereby 
advancing our understanding of the functional specialization within 
the mPFC in the context of preference estimation. In addition to our 
primary objective, we sought to determine if other subregions of the 
mPFC played a role in the preference inference process. To this end, 
we conducted further analysis using an mPFC binary mask that 
encompasses dmPFC [A1], pgACC [A2], and vmPFC [A3].

The motivation to accurately infer others’ preferences can con-
flict with the motivation to express one’s own preferences. Accord-
ing to our model, such conflicts between motivation embedded in 
the vmPFC appear to be resolved through close communication 

with the dmPFC, leading to value adjustment (Kim 2020). Based on 
this hypothesis, in addition to the GLM-based fMRI data analysis, 
we ran a generalized psychophysiological interaction (gPPI) analysis 
(McLaren et al. 2012), which is particularly useful in examining 
task-dependent functional connectivity, to test if individuals with 
high accuracy in predicting others’ preferences would exhibit stron-
ger functional connectivity between the vmPFC and dmPFC in the 
‘other’ condition compared to the ‘self’ conditions. At an individual 
level, a voxel of interest (VOI) was extracted with the 5mm sphere 
around the peak (coordinates: x = 0, y = 38, z = −10) of the vmPFC 
cluster found in the multiple regression analysis. We utilized this 
VOI as a seed region. Time series were extracted from the vmPFC 
and served as the physiological variable, reflecting the neural activ-
ity in that region during the task. The contrasts for target- versus 
self-trials during the item phase served as the psychological vari-
able. Then, the physiological and psychological variables were mul-
tiplied to create the PPI term. Finally, the individual accuracy scores 
were regressed with the contrast images of PPI term.

Our particular interest was the functional coupling between the 
mPFC subregions, with a specific focus on the vmPFC and dmPFC. 
To implement this analysis, we used an dmPFC binary mask [A1], 
consistent with the GLM-based approach above. This allowed us to 
explore whether the contextual connectivity strength within the 
mPFC increased during target-trials compared to the self-trials 
among the participants with higher accuracy scores.

Neuroimaging data analysis: Multivariate approach
We utilized MVPA to identify brain regions that encapsulate 
inter-subject variability during the estimation of preferences based 
on facial feature processing. In our study, we employed inter-
subject RSA (IS-RSA; van Baar et al. 2019) to identify regions asso-
ciated with variability in preference estimation accuracy. The main 
question was which brain regions exhibited similar activation pat-
terns among participants with comparable accuracy scores in esti-
mating others’ preferences.

First, we segmented the entire brain into functionally relevant 
regions using a predefined 200-parcel map from the Neurosynth 

Figure 2.  Accuracy scores (percentage) of each participant. Participants scored above the chance level (dot line) on average (M = 0.31, t
37( ) = 5.91,  

P < .001).
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database (https://neurosynth.org/). This map organizes the global 
brain atlas based on meta-analytic functional coactivation pat-
terns. In our analysis, 183 parcels were included, omitting seven-
teen parcels due to their absence in our scan scope. Given prior 
research indicating distinct statistical properties between univar-
iate and multivariate approaches (Jimura and Poldrack 2012, 
Coutanche 2013, Davis et al. 2014), we extended the ROI map ini-
tially used for univariate analysis. Importantly, MVPA captures 
heightened sensitivity to within-subject voxel variability but dis-
plays diminished sensitivity to inter-subject mean activation vari-
ability compared to univariate analyses (Davis et al. 2014). To 
understand individual differences in preference accuracy, we com-
puted a behavioural dissimilarity matrix by calculating the abso-
lute difference in accuracy scores among all participant dyads.

Subsequently, we constructed an inter-subject dissimilarity 
matrix for each of the 183 neural activation map parcels to assess 
inter-subject dissimilarity in mean activity patterns during the 
inference of the target’s preference. We used the identical contrast 
map as in the univariate analyses for inter-subject representational 
similarity analysis (IS-RSA). Of particular interest were the target-
trials compared to self-trials during the item and face phases. To 
identify brain regions where neural representations corresponded 
with behavioural inclination, we computed a nonparametric Ken-
dall’s tau-a correlation between the parcel dissimilarity matrices 
and the behavioural ones (Nili et al. 2014). The significance of tau-a 

was validated through permutation testing. Specifically, while 
retaining the neural Representational Dissimilarity Matrix (RDM), 
we randomized the behavioural RDM 10,000 times to create a null 
distribution. To account for multiple comparisons, we adjusted the 
P-values using an FDR correction, and P-values below .01 post-ad-
justment indicated a significant correlation between inter-subject 
behavioural patterns of preference estimation accuracy and neural 
representation patterns of the parcel.

Results
Neuroimaging results: Multiple regression analysis 
with estimation accuracy as covariate
Our primary objective in the univariate analysis was to replicate 
the findings of the previous study (Kang et al. 2013), regarding the 
involvement of the dmPFC in accurately estimating another per-
son’s preferences with limited information. From the mPFC subre-
gions (de la Vega et al. 2016), we included dmPFC area [A1] as binary 
mask for a regression analysis. Individual contrast maps of target- 
vs. self- trials were regressed against individual accuracy scores as 
a covariate. As predicted, during the item phase, we found a signif-
icant correlation in the dmPFC: a right cluster (peak coordinates: 
x = 8, y = 46, z = 50, small volume correction (SVC) corrected, 
PSVC peakFWE−  = 0.028) and a left cluster (peak coordinates: x = -10, y = 
44, z = 50, small volume correction (SVC) corrected, PSVC peakFWE−  = 

Figure 3.  Univariate results. The mPFC activity predicts the estimation accuracy score. (A) The neural activations of the dmPFC (peak coordinates: x = 
8, y = 46, z = 50) were positively correlated with how accurately participants guessed the targets’ actual preferences (SVC corrected, PSVC peakFWE−  = 0.028) 
during the item phase. (B) The vmPFC (peak coordinates: x = 0, y = 38, z = -10) activity also positively correlated with the accuracy score (SVC corrected, 
P
SVC clusterFWE−  = 0.028) during the item phase. The scatterplot of the mPFC activations and the accuracy score is presented on the right side. The shaded 

area indicates the 95% confidence interval.
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0.038) (Fig. 3). This suggests that individuals with higher accuracy 
scores exhibited greater activity within these clusters during the 
evaluation of items for the targets compared to themselves. No 
significant correlation was found during the face phase.

Although the dmPFC was the primary ROI of the regression anal-
ysis, we performed additional analysis to explore whether other 
regions of the mPFC was engaged in accurately inferring other’s 
preferences. Therefore, we included other mPFC subregions, includ-
ing dmPFC [A1], pgACC [A2], and vmPFC [A3], as a mask. The result 
revealed a significant correlation in the vmPFC (peak coordinates: 
x = 0, y = 38, z = -10, small volume correction (SVC) corrected, 
P
SVC clusterFWE−  = 0.028) during the item phase. Conversely, no significant 

correlation was found during the face phase. In addition, no brain 
regions showed significant results after correction for multiple 
comparisons at the whole-brain level.

Neuroimaging results: Functional connectivity 
between vmPFC and dmPFC in relation to individual 
estimation accuracy score
Multiple regression analysis revealed that not only did dmPFC but 
also vmPFC regions activated more strongly as the participants’ 
accuracy score increased. To examine the underlying rationale, we 
delved into the neural connectivity within mPFC subregions in 
relation to individual variations in preference estimation accuracy. 
This scrutiny pinpointed a significant cluster in the dmPFC (peak 
coordinates: x = 4, y = 36, z = 52, small volume correction (SVC) 
corrected, PSVC peakFWE−  = 0.034, Fig. 4). Specifically, functional connec-
tivity between the vmPFC and dmPFC intensified among the par-
ticipants with higher accuracy when discerning targets’ preferences 
compared to when expressing their own preferences.

Neuroimaging results: Inter-subject representational 
similarity analysis (is-RSA)
Significant inter-subject representational similarity effects were 
found in four brain parcels, during the item phase, including the 
ventral anterior insula (vAI), the dorsal anterior insula (dAI), and the 
pregenual anterior cingulate cortex (pgACC) (Fig. 5). This implies that 
the inter-subject dissimilarity of neural activity patterns during the 
estimation of others’ preferences corresponded to the inter-subject 
distance pattern of accuracy score. Conversely, no significant is-RSA 

effect was yielded during the face phase. These results indicate that 
individuals with similar accuracy scores shared similar multi-voxel 
patterns only during the item phase, not when processing the facial 
features of the target.

Notably, the pgACC parcel identified through the is-RSA did not 
overlap with the vmPFC cluster obtained through the univariate 
approach (Fig. 6). Despite their close proximity, the absence of over-
lap suggests that both analytical methods can yield analogous yet 
distinctly separate outcomes. When using continuous measures, 
such as distance from the correct rating and its inverse, only the 
insula showed significant association with preference estimation 
in multivariate analysis, with no significant regions in univariate 
analysis. This suggests that exact accuracy may be closely linked 
to specific neural mechanisms, highlighting the role of precision 
in social inference tasks.

Discussion
This study investigated the neural underpinnings associated 
with individual differences in the ability to infer others’ prefer-
ences based solely on facial cues. Consistent with the findings 
of Kang et al. (2013), considerable variability emerged among 
participants in their accuracy of estimating others’ preferences, 
with some individuals demonstrating adeptness while others 
exhibit less precision. This behavioural variation corresponded 
with distinct patterns observed in the neuroimaging data col-
lected during the task. Univariate analysis reaffirmed the role 
of the dmPFC in preference estimation, particularly highlighting 
its activity during the item phase as indicative of the accuracy 
in inferring others’ preferences. Furthermore, multivariate anal-
ysis, particularly the results from IS-RSA, showed correlations 
between participants’ estimation accuracy patterns and neural 
activity patterns in the pgACC, ventral AI, and dorsal AI during 
the item phase. Collectively, these findings underscore the cen-
tral role of the mPFC and insula in the process of estimating 
others’ preferences.

Understanding others’ minds involves recognizing their thoughts 
and emotions, even when these mental states are not directly 
observable. Traditionally, two key concepts, Theory of Mind (ToM) 
and empathy, have framed these social cognitive capacities. 

Figure 4.  gPPI result. The functional connectivity of the vmPFC and dmPFC is linked to higher accuracy scores in estimating targets’ preferences. A 
heightened psychophysiological interaction with vmPFC activity was observed in the dmPFC (peak coordinates: x = 4, y = 36, z = 52, small volume 
correction (SVC) corrected, PSVC peakFWE−  = 0.034) during target-trials compared to self-trials. The scatterplot on the right side illustrates the relationship 
between the strength of connectivity between the vmPFC and dmPFC and individual accuracy scores in estimating preferences, with the shaded area 
indicating the 95% confidence interval.
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However, a recent meta-analysis study suggests that these terms 
have functioned as ‘umbrella terms’ encompassing various pro-
cesses (Schaafsma et al. 2015, Zaki 2017). This has led to inconsis-
tent use of terminology, with different terms being used to describe 
similar process and vice versa (Schurz et al. 2021). Proposals have 
been made for a coherent hierarchical model of social cognitive 
processes, positioning empathy and ToM as higher-order processes. 
The discussion also advocates for breaking down these processes 
into smaller, interdependent components through ‘deconstruction’ 
(Schaafsma et al. 2015), warranting further exploration of these 
building blocks. In response, our research aims to contribute as an 
integral component of this framework. Specifically, our study inves-
tigates the cognitive mechanisms involved when individuals infer 
others’ preferences through minimal facial cues combined with 
contextual information—item cues. Furthermore, we hypothesize 

that this cognitive building block is associated with neural activity 
in the mPFC and the insula.

Roles of dorsal and ventral mPFC subregions in 
preference estimation
Various subregions of the mPFC, operating in coordination, play a 
pivotal role in social valuation. A recent model proposes a hierar-
chical organization of mPFC subregions, with the more dorsal 
region incorporating additional external sensory information from 
the environment to regulate the more ventral region, which pro-
cesses intuitive social values based on internal bodily signals (Kim 
2020).

Consistent with the previous study (Kang et al. 2013), our study 
reaffirmed the role of the dmPFC in estimating others’ preferences. 
The dmPFC is recognized as a key component of the broader 

Figure 5.  Multivariate results. Inter-subject representational similarity analysis indicates that participants with similar accuracy score exhibited 
similar neural patterns in brain regions including the pgACC and insula.
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mentalization network, contributing to a wide spectrum of social pro-
cesses such as reasoning about other’s mental states (Mitchell 2008, 
Wagner et al. 2012, Wagner et al. 2016), forming impressions of others 
(Mitchell et al. 2005, Schiller et al. 2009), and predicting social inter-
actions (Powers et al. 2016). Given its role in mentalization, it is rea-
sonable to consider the dmPFC as pivotal in other’s preference 
estimation. Moreover, the dmPFC integrates information from various 
brain networks to guide thoughts and actions (Shackman et al. 2011), 
facilitating adaptive responses in a complex social environment.

Contrary to our initial expectations, the ventral region of the 
mPFC (vmPFC) also emerged as significant in accurately inferring 
others’ preferences. In addition, exploratory gPPI analysis revealed 
heightened functional coupling between the vmPFC and dmPFC in 
individuals with greater accuracy scores. This suggests that indi-
viduals with higher accuracy scores exhibit increased connectivity 
between these regions when assessing others’ preferences com-
pared to when expressing their own preferences. Drawing from 
recent theories of morality and altruism (Haidt 2007, Kim 2020), 
we propose that this phenomenon may stem from an instrumental 
desire to accurately estimate others’ preferences, driven by a pri-
mal instinct for survival and reproduction. In other words, individ-
uals may learn that precise predictions foster favourable 
impressions, leading to the internalization of this instrumental 
desire within the vmPFC. This facilitates an automatic and intuitive 
motivation to seek detailed information for preference estimations. 
This hypothesis aligns with evidence indicating that the vmPFC is 
involved in context-independent internalized prosocial valuation 
(Sul et al. 2015, Jung et al. 2018). Considering previous research 
indicating the association between the vmPFC and self-centred 
preferences (Kang et al. 2013), individuals with high accuracy in 
predicting others’ preferences may demonstrate increased vmP-
FC-dmPFC communication, integrating additional external infor-
mation to resolve conflicts between the instrumental desire for 
predicting others’ preferences and self-centred preferences 
encoded within the vmPFC (Kim 2020).

Neural representations of pgACC and insula 
associated with preference estimation
In this study, our a priori goal was to uncover the neural patterns 
associated with accurately estimating others’ preferences. Our 
results showed that individuals with similar behavioural scores 
exhibited comparable activity patterns in the pgACC and insula, 
both crucial for interoception—the perception of internal bodily 
sensations (Critchley and Harrison 2013, Barrett and Simmons 
2015). The pgACC and AI are central components of the neural 
circuitry linked to predicting bodily reactions or maintaining inter-
nal equilibrium, potentially through von Economo neurons (VEN), 
which facilitate rapid brain-body communication (Allman et al. 
2010, Fischer et al. 2016). Although this connection suggests a 
potential link between sensing our own internal states and accu-
rately inferring others’ preferences, it remains unclear how the 
interoceptive network contributes to this process of correctly infer-
ring others’ preferences.

The pregenual anterior cingulate cortex (pgACC), in conjunction 
with the anterior insula (AI), also plays a key role in the processing 
of social information. The pgACC is actively engaged in tracking 
others’ motivations (Chang et al. 2013, Apps et al. 2016), differen-
tiating between self and other-oriented information in social inter-
actions (Lockwood and Wittmann 2018), and processing empathy 
(Xu et al. 2009, Wittmann et al. 2018). The activities of the pgACC 
were positively linked with the ability to utilize contextual infor-
mation for inferring others’ emotional states (Kim et al. 2022), and 
damage to the pgACC can impede social awareness and empathic 
capabilities (Seeley 2008). The AI, another critical region, plays a 
significant role in social information processing and is implicated 
in empathy, compassion, and various interpersonal phenomena 
(Lamm and Singer 2010). AI integrates multiple bodily signals to 
simulate internal states of the targets to generate appropriate 
empathic behaviours (Singer et al. 2009). Difficulties in theory of 
mind and hypoactivity in AI during face processing have been noted 
in autism spectrum disorder (Uddin and Menon 2009). In the 

Figure 6.  Overlay of results. The vmPFC cluster (green) identified through the univariate approach is combined with the pgACC parcel (yellow) from the 
multivariate approach.
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context of social inference concerning the learning of others’ pref-
erences, both the pgACC and AI contribute to these complex pro-
cesses (Lau et al. 2020). Furthermore, individual differences in the 
activities of the pgACC and AI signify the degree of context depen-
dency in estimating other’s affective states (Kim et al. 2022). The 
extensive involvement of the pgACC and AI in social information 
processing hints that they may play a coordinating role in predict-
ing preferences in a target individual.

From birth, individuals are deeply intertwined with their pri-
mary caregivers for survival, and as they mature, they engage in a 
dynamic interplay with a broader social environment, shaping and 
being shaped by it (Atzil et al. 2018). Consequently, individuals 
develop internal frameworks based on societal norms and the 
behaviours of those around them. These frameworks shape our 
‘sense of should (Theriault et al. 2021),’ guiding us to act in accor-
dance with cultural and social standards (Constant et al. 2019). 
Conforming to meet others’ expectations can foster a more stable 
social setting, helping us conserve energy as we navigate the intri-
cacies of social interactions. Previous research has linked the track-
ing of social norms, aimed at minimizing metabolic costs, to 
interoceptive processing (Theriault et al. 2021, Sennesh et al. 2022).

Within the framework of interoceptive predictive coding, the 
brain continually forms and updates models of the external envi-
ronment and internal organism states (Petzschner et al. 2021, 
Engelen et al. 2023). Attention plays a pivotal role in modifying 
these models (Feldman and Friston 2010), prompting individuals 
to update them in response to prediction errors. Participants who 
excelled in this task may habitually place significant weight on 
their social environment, adjusting their generative models more 
frequently and specifically for each individual encountered. 
Through consistent attention and adjustment, they likely devel-
oped more refined and detailed internal models of others, provid-
ing a reliable reference point for more accurate predictions 
despite task’s requirement to predict the preferences of unfamil-
iar individuals.

This study suggests that that activation patterns in the mPFC 
and AI are crucial in accounting for individual differences in 
thin-slicing ability—the capacity to accurately predict others’ pref-
erences based on briefly presented facial cues. Given that these 
regions are key components of the interoceptive neural circuitry, 
it is plausible that constructing an accurate predictive model of 
others’ preferences—by minimizing the gap between expectations 
and observed behaviours—requires close communication between 
the brain and body. Such a refined model could facilitate social 
interactions, reduce conflicts, and ultimately enhance social adapt-
ability by conserving bodily resources.

Interoceptive network in cue integration
Another noteworthy discovery in this study pertains to the neural 
patterns in the pgACC and insula, which exhibited variations 
among participants only during the item phase, not the face phase. 
This suggests that when facial information was presented, no 
regions showed neural patterns similar to those of the behavioural 
accuracy score, implying that estimation accuracy was not contin-
gent upon distinct facial information processing alone. Instead, the 
critical determinant of preference accuracy appeared to be the 
integration of both facial and item information, with the insula 
and pgACC emerging as a pivotal region in this integration process. 
This finding resonates with previous study identifying the AI’s cru-
cial role in cue integration for empathic responses and contextual 
dependency in ambiguous facial emotion processing (Kim et al. 
2022). Conjunction analyses focusing on empathy, interoception, 
and social cognition have highlighted the AI as a central hub for 

integrating interoceptive and social information (Adolfi et al. 2017). 
Moreover, the communication between the pgACC and AI has been 
implicated in interoceptive prediction (Barrett and Simmons 2015). 
Consequently, we hypothesize that both the pgACC and insula play 
pivotal roles in interoception and social cognition, seamlessly inte-
grating internal and external information to construct sophisti-
cated models of the social environment relevant to an individual’s 
survival goals.

Methodological considerations
This research particularly focuses on the discrepancy between uni-
variate and multivariate analyses. While the pgACC and insula 
were identified as significant regions in RSA analyses, they were 
not found in univariate approaches. MVPA is known for its superior 
sensitivity in detecting subtle differences between psychological 
states, whereas univariate analysis is more sensitive to inter-sub-
ject variability in mean activation across voxels within a specific 
ROI (Davis et al. 2014, Kohoutová et al. 2020). In support of this, it 
has been observed that even within the same brain regions, uni-
variate and multivariate analyses can yield opposing results (Woo 
et al. 2014, Kim and Kim 2021). It has been established that the 
magnitude of the BOLD response is sensitive to changes in the 
excitation-inhibition balance within cortical microcircuits, which 
involve pyramidal projection neurons interacting with local GAB-
Aergic interneurons, possibly reflecting mismatch or prediction 
error-related feedback signals (Logothetis 2008). From this perspec-
tive, the dmPFC activity observed in univariate analysis could be 
interpreted as reflecting the activity of local GABAergic interneu-
rons responding to mismatches or prediction errors arising from 
the comparison between internal models and external information 
in the process of inferring others’ preferences. In contrast, the 
pgACC and insula activity observed in multivariate analysis may 
not be directly related to this preference inference process. While 
multivariate analysis provides valuable insights into the neural 
representations associated with individual differences, the lack of 
convergence across different analytical methods highlights the 
need for further investigation. Moreover, MVPA, originally devel-
oped as a predictive tool, may not always be suitable for interpret-
ing brain function and is more complex than univariate analysis, 
requiring caution (Hebart and Baker 2018). Future research should 
employ complementary analytical approaches to better under-
stand the neural mechanisms underlying preference estimation.

The activation patterns of the mPFC and AI were correlated with 
fine-grained accuracy scores, but not with categorical accuracy. 
Here, categorical accuracy refers to a coarser measure in which 
‘like’ and ‘strongly like’ responses are collapsed into a single cate-
gory, as are ‘dislike’ and ‘strongly dislike.’ This distinction empha-
sizes that the observed neural correlates may be more strongly 
linked to precise, fine-grained estimations than to broad categorical 
classifications.

This discrepancy between fine-grained accuracy scores and cat-
egorical accuracy scores may stem from the fact that our 
behavioural task required participants to choose one out of four 
options rather than simply indicating like versus dislike. A four-
choice task likely demands more extensive information processing 
and mentalization than a two-choice task, potentially engaging 
different neural circuits. Even if the same neural circuits are 
involved, the level and pattern of activation might vary. Future 
research should investigate whether a like versus dislike task would 
reveal correlations between the activation patterns of the mPFC 
and AI would and categorical accuracy. Furthermore, this distinc-
tion aligns with hierarchical models of social cognition, which pro-
pose that higher-order cognitive processes involve complex and 
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abstract reasoning, whereas lower-order processes rely on faster, 
heuristic-based decision-making (Schurz et al. 2021). Given that 
fine-grained judgements require detailed consideration of individ-
uating information rather than broad categorical assumptions, 
they are more likely to engage neural regions associated with high-
er-order social inference. In contrast, categorical classification often 
relies on heuristic processing, allowing for rapid but less nuanced 
judgments. Our findings, therefore, suggest that the involvement 
of the mPFC and AI in fine-grained accuracy may reflect the 
increased cognitive demands of more effortful social inference.

Limitations
This study has a limitation that the participant pool consisted 
exclusively of female participants. This choice was made to control 
for potential gender differences in social cognition and preference 
estimation, as prior studies have indicated such disparities (Carney 
et al. 2007). However, this limits the generalizability of our findings 
to a broader population, including males or mixed-gender groups. 
Additionally, participants may have inferred the targets’ prefer-
ences based on various pieces of information that can be extracted 
from their faces (e.g., BMI, facial expression). Future research 
should aim to include a more diverse sample to improve general-
izability and examine which specific facial cues contribute to pref-
erence estimation and to what extent.

Furthermore, while our Bayesian post hoc power analysis sug-
gests that the study was likely well-powered to detect the observed 
effects, we acknowledge that post hoc power calculations based 
on observed data may provide biased estimates of actual power 
(Heinsberg and Weeks 2022). These results should therefore be 
interpreted with caution. Nonetheless, we believe that our signifi-
cant findings provide credible initial evidence for reported effects. 
In line with recent study (Lengersdorff and Lamm 2025), we suggest 
that statistically significant results can retain evidential value even 
when derived from studies that may not meet traditional power 
thresholds. Future research should conduct a priori power analyses 
based on the effect sizes observed in the present study to firmly 
establish the robustness and replicability of these findings.

Conclusion
In conclusion, this study delved into individual variability in accu-
rately estimating the preferences of strangers based on minimal 
information. Consistent with prior research, participants overall 
surpassed chance level estimations, demonstrating a wide range 
of accuracy scores, with the dmPFC playing a significant role. Nota-
ble, activity patterns within the interoceptive network, particularly 
the pgACC and insula, correlated with similar accuracy scores 
during the item phase. These findings underscore the neural sig-
natures of individual differences in accurately assessing others’ 
preferences and tailoring estimations to specific targets rather than 
relying on broad generalizations. We propose that the ability to 
rapidly infer others’ preferences from sparse information serves 
as a foundational, lower-order process contributing to the more 
complex, higher-order processes facilitating social cognition. How-
ever, further research is needed to elucidate the precise mecha-
nisms of this process in more detail.
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