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A B S T R A C T

Erroneous behavior is usually, although not always, inhibited following a negative outcome (e.g., a penalty),
although this adjusting behavior is highly varied. Here we aimed to identify brain regions associated with
successful behavioral adjustment to negative feedback, and the intrinsic functional connectivity associated with
individual variability in such adjustments, using combined task-based and resting-state functional magnetic
resonance imaging (MRI). Functional MRI data were obtained from 28 young adults performing a visuomotor
associative learning task, wherein participants learned by trial and error to make one of four key responses to
each of 24 English letters. All preceding error response trials were sorted post hoc, based on whether the error
response was repeated (Error-Repeated) or not (Error-Changed) for the subsequent trial with the same stimulus,
and the rate of error adjustment for each individual was computed as the number of Error-Changed trials divided
by all error trials. We identified two brain regions, the right dorsal anterior cingulate cortex (dACC) and dor-
solateral prefrontal cortex (DLPFC), whose brain response was significantly greater for Error-Changed than
Error-Repeated trials. Stronger anti-correlation between the right dACC seed and right amygdala and between
the DLPFC seed and the paracentral gyrus and inferior temporal region extending to the hippocampus was
associated with better adjustment ability. These results suggest that the stronger anticorrelated relationship
between the error monitoring region and emotional processing and that between the executive control region
with those involved in memory or default mode network reflect individual variability in error adjustment.

1. Introduction

Erroneous behavior is usually, but not always, corrected after a
negative outcome. Adjustment of subsequent behavior based on the
outcomes of actions is important for adaptive goal-directed behavior,
which may be critical for survival. Negative feedback processing for
successful behavioral adaptation involves several cognitive processes,
including monitoring outcomes [1,2], devoting attentional resources
[3], inhibiting erroneous stimulus-response associations [4], and reg-
ulating emotional responses evoked by negative outcomes [5]. How-
ever, the ability to learn from error varies widely. For instance, in-
dividuals with several psychiatric conditions, e.g., depression,
addiction, or attention deficit hyperactivity disorder, often experience
difficulty in this respect, which can result in significant complications in
everyday function [6]. An understanding of the neural mechanisms
contributing to this variability is critical for the treatment of such
deficits in error processing.

Extensive neurophysiological and neuroimaging studies have shown
that the dorsal anterior cingulate cortex (dACC) near the medial

prefrontal cortex (mPFC), pre-supplementary motor cortex, and com-
ponents of the limbic system, such as the amygdala and insula, are
involved during negative feedback processing. In particular, it is well-
established through animal and human studies that the dACC/mPFC
regions are involved in error processing [1,7–9]. Greater error-related
activation in the dACC/mPFC is more likely followed by successful
error adjustment, suggesting that those brain regions are associated
with performance subsequent to error [10–12]. In addition, the lateral
prefrontal cortex, particularly the dorsolateral prefrontal cortex
(DLPFC), has been implicated in processing negative performance
feedback, and is thought to be involved in the monitoring of executive
function, namely working memory. For example, higher DLPFC activity
has been reported for negative feedback that was informative for cor-
recting behavior [13]. The aversion network, including the amygdala
and the insula, are also related to the emotional aspects of negative
feedback processing [14]. Previous studies of dACC activity in relation
to individual differences in error adjustment during learning have
produced conflicting results, with some reporting relationships between
dACC activity and individual variability in learning [15]. For instance,
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group differences in the feedback-related negativity amplitude of the
dACC are observed when comparing two groups assigned based upon
reinforcement-learning performance (i.e., learners vs. non-learners)
[16,17].

Recently, evidence has emerged to suggest that human cognitive
function results from the dynamic interactions of distributed brain re-
gions acting together as networks [18]. Resting-state fMRI is a powerful
method for characterizing such networks. With it, functionally con-
nected brain areas have been identified where information flow across
distributed cortical systems can be detected [19]. Spontaneous, slow
(< 0.1 Hz) frequency fluctuations in BOLD signals are known to be
correlated among functionally connected brain regions across time
[20,21]. Specifically, one useful strategy is to use the resting activity of
one brain region of interest (ROI) to identify other brain regions that
are functionally connected (i.e., a seed-based approach). Furthermore,
relationships between resting-state functional connectivity (FC) and
behavior measurement have been demonstrated to be a powerful tool
for investigating individual differences in cognitive function, including
perception [22], working memory [23], and language skill [24]. In-
creased functional integration within networks with similar functions
have been reported to be related to the efficiency of cognitive function.
In addition, many studies have also shown that enhanced ability in a
variety of cognitive functions is also associated with strong negative
(i.e. anti-correlated) FC between “task-positive” cognitive networks and
“task-negative”, also known as the default mode networks [25–27],
usually interpreted as functional segregation for serving competitive or
different roles. These findings suggest that both integrated and segre-
gated brain networks may contribute to individual variability in error
processing. However, little is known about the functional connectivity
that is related to individual variability in error adjustment in a task-
independent “at rest” state.

To address these issues, we used combined task-based fMRI and
seed-based resting-state FC to identify relevant cognitive processing and
neural substrates that are related to individual differences in error ad-
justment. We utilized event-related fMRI during a learning paradigm, in
which participants had to learn stimulus–response associations that
were based on outcome information provided by external feedback. To
measure individual differences in the efficiency of error processing, we
examined the success and failure of negative feedback processing
throughout the learning session. We reasoned that its success could be
determined only by observing response choices in subsequent trials.
Specifically, negative feedback processing of a given trial was con-
sidered successful if the response choice for a learning stimulus was
switched to an alternative response when the same stimulus was next
presented in a subsequent trial, regardless of whether or not the swit-
ched response was the target response. Likewise, negative feedback
processing of a given trial was considered a failure if the same incorrect
response choice was repeated the next time the same stimulus was
presented. The efficiency of negative feedback processing was assessed
for each participant by calculating the rate of successful behavioral
error adjustments. Using event-related fMRI to compare brain activa-
tions for negative feedback events with subsequent adjustment (Error-
Repeated) to those without (Error-Changed trial), we localized brain
regions that were associated with successful error processing during
learning. The intrinsic functional connectivity of these brain regions
was then identified using the individual differences in error processing
efficiency. We then performed a seed-based correlation analysis to find
brain regions showing a correlation between individual differences in
error adjustment and resting-state FC of two seed brain regions in-
cluding the dACC and DLPFC that were defined from task-based fMRI
results.

Based on previous studies, we hypothesized that FC between brain
regions that play roles in error processing are at the root of individual
variability in error processing. Several factors in FC could be linked to
interindividual variability. Integrated FC within brain regions that are
known to be involved in error and feedback processing can reflect the

efficiency of processing, and result in higher performance in error ad-
justment. Additionally, it can be assumed that functional segregation
between cognitive and emotional processing may ensure that emotion
would not interfere with attention. In addition, we predicted that there
would be an anti-correlated relationship between the task-positive
network and task-negative network (i.e., default mode network), as
measured by the strong negative correlation in individuals with better
adjustment performance.

2. Material and methods

2.1. Participants

Twenty-eight healthy participants (15 women; mean ± SD age:
22.5 ± 2.3 years), recruited from the Kangwon National University
community, participated in this study. None reported a history of
neurological or psychiatric disorders, and all participants were right-
handed. Two were excluded from final analyses due to the inability to
follow instructions and inadequate resting-state fMRI acquisition, re-
sulting in 26 participants for the imaging analysis. The study was ap-
proved by the institutional review board of Kangwon National
University Hospital, and conformed to the tenets of the Declaration of
Helsinki. Written informed consent was obtained from each participant
before the fMRI scanning session. Participants were given basic pay-
ment for participation and a extra monetary bonus, depending on their
performance during the fMRI scanning session.

2.2. Behavioral task

During task-related fMRI scanning consisting of four runs, partici-
pants performed a feedback-based visuo-motor association learning
task in a trial and error fashion: they were told to deduce associations
between each letter of the English alphabet and one of four alternative
responses (the index and middle finger for each hand). Each trial con-
sisted of the following sequence: All trials started with a fixation “+”
for 500ms; the alphabet stimulus was presented for 2000ms, followed
by a 500-ms fixation inter-stimulus interval; Feedback was shown on-
screen for 1500ms. The inter-trial interval (ITI) was varied between 4 s
and 16 s (mean 6000ms), in order to increase the signal detection in
fMRI analysis [28]. The event sequence for each trial is depicted in
Fig. 1.

The learning stimuli were composed of 24 letters of the English
alphabet. Two alphabet letters, X and O, were excluded from the task to
avoid ascribing a pre-existing meaning of correctness (in Korean, X is
associated with “incorrect”, and O with “correct”). Each alphabet sti-
mulus was presented eight times during the four runs. For each run, 24
alphabet symbols were presented twice, in a pseudo-random order,
with the restriction that the same stimulus never appeared con-
secutively (average inter-trial delay between the consecutive same sti-
muli= 253.5 s).

Performance feedback for each trial was provided to indicate whe-
ther the participant’s selected response was correct or incorrect. For
correct response, monetary positive feedback was always given with the
configurations of an upward cone with an incentive of 200 KRW (ap-
proximately $0.20, USD). Since, in the early learning phase the chance
of receiving negative feedback was greater than that of positive feed-
back, in order to avoid large net losses of monetary incentive (although
in reality, no subjects were required to pay such a debt) we balanced
the 200 KRW reward by varying the size of the penalty (none, 100
KRW, or 500 KRW), using a diamond shape containing ‘X’, a downward
cone containing “−100”, or a downward cone containing “−500”,
respectively. Each letter used as learning stimulus was associated with a
target response in a fixed-rule based fashion, with a fixed size of penalty
as negative feedback for incorrect responses.

Participants were instructed to choose a one-button response among
the four available in response to a visual learning stimulus presented on
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a screen. During a pre-scan training session one week prior to fMRI
scanning, participants performed a practice task with Korean letters, to
make sure that they were familiar with the behavioral task and the
feedback configurations. They were informed that a stimulus-response
association would be fixed throughout the learning session, not only for
the contingency between stimuli and target response, but also for the
amount of monetary loss associated with errors.

Stimulus delivery and response recording were controlled by E-
prime (version 2.0, Psychology Software Tools, Inc., Pittsburgh, PA,
USA), running on a computer that was interfaced with the MR scanner
with an LCD monitor inside the head coil, subtending a visual angle of
approximately 15°. To ensure incentive compatibility, participants were
informed beforehand that they would receive actual payment based on
their performance, and that the total amount of reward/punishment
obtained from task performance could be received as an additional
bonus. Participants received the financial incentive in cash after fin-
ishing the experiments.

2.3. Behavioral analysis

We performed conventional behavioral analyses on the average
percentage of correct responses (CR), which was calculated as the
percentage of trials with a correct response obtained from the four
consecutive runs. To examine whether the S-R association was learned,
a one-way repeated measure analysis of variance (ANOVA) was per-
formed on CR rate, with the run (level: 1st, 2nd, 3rd and 4th run) as the
within factor using IBM SPSS statistics 20.0 (IBM Corp., Armonk, NY,
USA).

“Error adjustment” for a given negative feedback was defined as an
instance of switching to a different choice on the next presentation of
the same letter, as opposed repeating the same error. An error adjust-
ment rate was calculated from the behavioral data of each individual
obtained during the task-based fMRI scans, and the rates for all parti-
cipants were subjected to a correlation analysis of resting state fMRI
data as a covariate. We first selected all trials which were preceded by
negative feedback for the same stimulus in a previous trial, and then the
choice of behavioral response of the current trial (trial n) was sorted
based on the relationship with the previous error. If the current re-
sponse (trial n) for the same stimulus was switched to an alternative,
rather than repeating the response made in the previous trial (trial
n− 1), it was called an error-changed response. Similarly, if the current

response (trial n) was the same as the previously penalized one (trial
n− 1), it was called an error-repeated response. Therefore, the re-
sponse choices of the first presentations of a given stimulus of the first
run (there were two presentations of each stimulus in every run) were
not included in the behavioral analysis. The error adjustment rate was
then calculated for each participant as the ratio of the number of trials
with error-changed responses relative to the total number of trials fol-
lowing negative feedback (i.e., the sum of both error-changed and
error-repeated responses).

In addition, the length of the delay period (between two consecutive
same learning stimuli) was compared between the error-repeated and
error-changed trials, in order to evaluate the possibility that it affects
the success or failure of subsequent error adjustments.

2.4. MRI acquisition

fMRI data were obtained with a 3-Tesla SIEMENS TRIO scanner in
the following order: structural, resting-state fMRI, and task-based fMRI
data. T1-weighted anatomical images were obtained using a 3D fast-
field echo sequence (repetition time [TR]=1900ms, echo time
[TE]=2.52ms, flip angle= 9°, field of view [FOV]= 256×256mm2,
matrix size= 256×256×192, voxel size= 1.0× 1.0×1.0mm3).
The MRI sequence for task-based functional and resting-state imaging
was a gradient echo planar imaging (EPI) sequence (TR=2000ms,
TE= 30ms, flip angle= 90°, FOV=240×240mm2, 36 slices, des-
cending sequential, 254 volumes, matrix size= 80×80, voxel
size= 3.0× 3.0×3.0mm3, 1mm gap). An fMRI session consisted of
one resting-state run and four task-based fMRI runs, each lasting 8min
28 s. Resting-state was defined as the absence of any specific cognitive
task during fMRI scanning, for which subjects were told to relax and
close their eyes.

2.5. Task-related fMRI analyses

Preprocessing and statistical analysis of task-based fMRI data and
resting-state fMRI data were performed using Statistical Parametric
Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm) implemented in
MATLAB (Matlab 7.6, Mathworks, Inc., Concord, MA, USA). fMRI data
were preprocessed as follows: 1) head-motion correction, 2) slice-
timing correction, 3) coregistration of EPI and T1 images, 4) spatial
normalization to the Montreal Neurological Institute 152-brain

Fig. 1. Experimental paradigm. Participants learned by trial and error to make one of four responses to each of 24 letters of the English alphabet. All error trials were sorted post-hoc,
based on whether the error response was repeated (‘Error-Repeated’) or not (‘Error-Change’) for the subsequent trial with the same stimulus.
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template using T1-image unified segmentation, with a resampling voxel
size of 3×3×3mm3, 5) spatial smoothing with 6-mm full-width half-
maximum.

Negative feedback events were sorted post-hoc into two types;
Error-Change and Error-Repeated. Error-Change refers to a negative
feedback event of trial n, which was followed by a selection of an al-
ternative response at trial n+1 (for the same letter), while Error-
Repeated refers to a negative feedback event of trial n, which was fol-
lowed by repetition of the same error response at trial n+1. In addi-
tion, although it is not the focus of current study, all positive feedback
events were modeled into two types: Correct-Repeated (positive feed-
back event followed by a selection of the same response) and Correct-
Changed (positive feedback followed by choice of a different response).
The last (fourth) run was excluded from further imaging analysis, be-
cause no information on the following response choice was available for
half of the feedback events where a letter was presented for the last
time (8th repetition), resulting in a total of 144 trials for further ana-
lysis. For task-related fMRI analysis, the average number of Error-
Changed trials was 59.12 (± 9.53), and that of Error-Repeated was
18.96 (± 6.23). Note that both for imaging and behavioral analyses, all
negative feedbacks were collapsed, regardless of the size of monetary
loss. No significant difference associated with the amount of monetary
loss was found either for the correct response rate (p=0.92) or the
error adjustment rate (p=0.84). No brain region showed a variation in
activation for different size of monetary penalty, even with a lenient
threshold (height threshold p < 0.005).

In the first-level individual analyses, preprocessed fMRI data were
analyzed with a rapid event-related fMRI design, where the four dif-
ferent feedback events (Error-Repeated, Error-Changed, Correct-
Repeated, and Correct-Changed) were modeled as regressors. In the
general linear model analysis, each regressor was modeled as a stick
function (duration= 0 s) convolved with the canonical hemodynamic
response function. The six head-motion parameters (three translations
and three rotations) derived from realignments were entered as cov-
ariates of no interest to remove the effects of head motion. A temporal
high-pass filtering with a cut-off frequency 1/128 Hz was applied to
remove low frequency drift, and serial correlations were corrected
using a first-order autoregressive model [AR (1)]. The presentation of
each learning stimulus, time of response choice, and inter-trial interval,
were left un-modeled, serving as implicit baselines. For each partici-
pant, only the contrast images for Error-Changed and Error-Repeated
events were subjected to a second-level group analysis.

In a second-level random-effect group analysis, a paired t-test was
performed between the resultant contrast image of Error-Changed and
Error-Repeated in order to identify the brain regions related to

successful error adjustment. We applied a cluster-level, family-wise
error (FWE)-corrected p-value of 0.05 for correcting multiple compar-
isons. First, statistical parametric maps were primarily thresholded at a
voxel-level p-value of 0.001. Then a cluster-extent threshold of
297mm3 (k≥ 11, voxel size= 3×3×3mm) was applied, which was
estimated from 5,000-iteration Monte Carlo simulations implemented
in Matlab [29,30]. Brain regions that were considered significant were
defined as regions of interest (ROI), and then used for the seed-based
analysis in the resting-state fMRI analysis. For illustration purposes, we
extracted the percent signal changes of ROI for two negative feedback
trial types using the Marsbar toolbox (v0.44, http://marsbar.
sourceforge.net). The resulting statistical map was superimposed on
the MNI template provided by MRIcroN software (http://www.nitrc.
org/projects/mricron). Significant clusters were labeled in accordance
with the SPM Anatomy toolbox v2.1 [31].

2.6. Resting-state functional connectivity analysis

2.6.1. Post-hoc definition of ROIs used as seed regions
We examined the resting-state FC associated with two seed regions

derived from a task-based fMRI analysis that compared Error-Corrected
and Error-Repeated trials. The right DLPFC (BA 46, MNI x, y, z= 24,
59, 25, T= 5.54, k= 18) and right dACC (BA 32, MNI x, y, z= 6, 29,
34, T= 4.97, k= 42) were identified for Error-Changed > Error-
Repeated contrast (Fig. 2A).

2.6.2. Preprocessing for resting-state fMRI
Preprocessing for resting-state fMRI was the same as for the task-

based fMRI analysis procedure, using statistical parametric mapping
(SPM12, http://www.fil.ion.ucl.ac.uk/spm). Additional procedures for
resting-state fMRI data were performed using the Data Processing
Assistant for Resting-State fMRI (DPARSF; V2.3) [32, via the following
steps: removal of linear trends; regressing out nuisance covariates (the
white matter signal, the cerebrospinal fluid signal, the global signals,
and six head-motion parameters); and band-pass temporal filtering
(0.01− 0.1 Hz).

2.6.3. Resting-state FC-behavioral correlations
For acquiring resting-state FC maps of each ROI, such as the right

DLPFC and dACC, we averaged the time-course of all voxels for the seed
regions defined by task-based fMRI. For the first-level individual ana-
lysis, whole brain correlation maps were generated by calculating the
correlation coefficients between the time-course of each voxel across
the whole brain and the averaged time-course of the ROIs, respectively,
obtaining resting-state FC correlation (r) maps. A Fisher’s z-

Fig. 2. Task-related fMRI result. (A) Brain regions of error-related activity, differentiating repeated from corrected errors during feedback processing (Error-Changed > Error-Repeated
trials). (B) Average BOLD signal changes in the right DLPFC (left) and right dACC (right) in response to ‘Error-Changed’ and ‘Error-Repeated’ trials, respectively.
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transformation was used to normalize the individual correlation maps
to z-maps. For the group level analysis, resting-state FC–behavior
analyses were carried out to identify brain regions for which the in-
trinsic FC of the right DLPFC and dACC at rest predicted individual
behavioral adjustment performance. A whole-brain regression analysis
with the behavioral adjustment ratio as covariates in the right DLPFC
and dACC z-maps was performed (Table 2 and Table S1). The resulting
maps were determined by a voxel-level height threshold with
p < 0.001, with an extent threshold of 297mm3 (k≥ 11, voxel
size= 3mm3). For both task-based fMRI and resting-state correlation
analysis, we also report the brain regions that survived a more con-
servative multiple correction threshold, voxel-wise FWE correction of
p < 0.05, in Table 1 and 2.

3. Results

3.1. Behavioral results

Performance of stimulus−response associations significantly im-
proved across the four runs, F(3, 75)= 144.901, p < 0.0001. The mean
CRs was 31.31% (SD=6.10) for the first run, 47.23% (SD=9.00) for
the second run, 58.96% (SD=12.16) for the third run, and 70.90%
(SD=13.59) for the last run.

The average of the error adjustment rate across all participants was
75.79% (SD=6.15), ranging from 60.00% to 89.09%, indicating that
there was relatively high individual variability. There was, however, no
significant run effect on the error adjustment rate, F(1, 25)= 1.47,
p=0.23, indicating constancy of error adjustment rate across runs. The
mean response times for Error-Changed trials (M=1199.32ms,
SD=127.22) did not differ from those for Error-Repeated trials
(M=1212.63ms, SD=148.84), t(25)=−0.69, p=0.50. No differ-
ence was found between the length of the delay period between two
consecutive learning stimuli [t(25)=− 0.401, p=0.692; for error-

changed trials, M=251.64 s, SD= 7.07; for error-repeated trials,
M=253.20 s, SD=14.60], indicating that delay length did not affect
the success or failure of subsequent behavioral adjustment of error re-
sponse. For positive feedback, 80.98% (SD=9.8) of the rewarded trials
were followed by repetition of the correct response in the subsequent
trial, indicating stable learning performance.

3.2. fMRI comparison of Error-Changed and Error-Repeated trials

The paired t-test analysis revealed a significant difference between
Error-Changed trials and Error-Repeated trials in the right DLPFC and
right dACC. For those brain regions, greater activations were observed
when subsequent adaptive behavioral alterations occurred relative to
when the error was repeated (Error-Changed > Error-Repeated trials;
Fig. 2B). In particular, the results for the dACC were consistent with
those of a previous study [32], showing that the error-related dACC
response was related to behavioral adjustment. The magnitude of the
BOLD percent signal change for Error-Changed trials was not correlated
with individual differences in error adjustment rates in either the right
DLPFC (r[24]=−.15, p=0.48) or the right dACC (r[24]= .04,
p=0.83). Significant positive correlations between the right DLPFC
and right dACC activities were found for Error-Changed trials, r
(24)= .46, p=0.016, not for Error-Repeated trial, r(24)= .01,
p=0.95.

3.3. Correlation between resting-state FC and behavior

In a whole-brain regression analysis of the DLPFC, significant ne-
gative correlations with individual differences in error adjustment were
found in the right paracentral lobule and left inferior temporal region
extending to the hippocampus (Table 2, Fig. 3A). Specifically, in-
dividuals with better error performance showed a strong negative
correlation between the DLPFC and paracentral lobule, and between the
DLPFC and the inferior temporal region.

Also, the strength of FC between the dACC and amygdala was ne-
gatively correlated with the error adjustment ratio (Table 2, Fig. 3B).
Individuals with a higher positive FC between the dACC and the right
amygdala showed lower adjustment rates for error, whereas those with
negative FC between the dACC and the amygdala showed higher ad-
justment performance.

4. Discussion

Although the dACC has been considered a critical region in error
processing, it has not been clear to what extent the resting-state FC of
this brain region affects individual differences in error-feedback pro-
cessing efficiency. In the current study, we examined error-adjustment
related brain regions for which resting-state FC was correlated with the
ability to perform error processing. We found that the right dACC and
right DLPFC were associated with successful error and feedback

Table 1
Brain regions showing difference between Error-Changed and Error-Repeated trials.

Brain regions R/L/M BA Cluster size Peak MNI coordinates T value

x y z

Error-Changed>Error-Repeated trials
DLPFC R 46 18 24 59 25 5.54
dACC R 32 42 6 29 34 4.97
dmPFC M 8 0 35 46 3.87
Error-Changed<Error-Repeated trials
n.s.

Cluster-wise FWE corrected p < 0.05, Abbreviations: BA, Brodmann’s area; MNI,
Montreal Neurological Institute; the MNI coordinates and t value for the local maxima of
the centers of the clusters; DLPFC, dorsolateral prefrontal cortex; dACC, dorsal anterior
cingulate cortex; dmPFC, dorsomedial prefrontal cortex; n.s., non-significant. Italics used
to emphasize that dmPFC was part of the cluster of the dACC.

Table 2
Functional connectivity predicted by error adjustment rate.

Seed Region Correlation Regions L/R/M BA Cluster size Peak MNI coordinate T value

x y z

Right DLPFC negative paracentral lobule R 4 71 9 −25 79 8.13*

inferior temporal gyrus L 20 32 −42 −19 −35 6.86*

hippocampus – −33 −22 −20 3.98
positive n.s.

Right dACC negative amygdala R 34 15 21 −8 17 4.25
positive n.s.

Cluster-wise FWE corrected p < 0.05; * refers to voxel-wise FWE-corrected p < 0.05. Abbreviations: BA, Brodmann’s area; MNI, Montreal Neurological Institute; the MNI coordinates
and t value for the local maxima of the centers of the clusters; DLPFC, dorsolateral prefrontal cortex; dACC, dorsal anterior cingulate cortex; n.s., non-significant. Italics used for
hippocampal data to emphasize that hippocampus was part of the cluster of the inferior temporal gyrus.
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processing. Moreover, better error adjustment performance was asso-
ciated with a stronger negative correlation between the DLPFC seed and
the paracentral gyrus, between the DLPFC seed and the hippocampus,
and between the right dACC seed and the amygdala.

In the feedback-based learning task, individual variability ranged
from 60.00% to 89.09% in terms of error adjustment efficiency in the
normal young adult participants. Individual ability was constant during
the learning task, with no improvement in the error adjustment ratio,
while CRs rates increased as learning occurred across runs. Assuming
these properties to be continuous and constant, rather than dichot-
omous, the approach that we applied in resting-state FC-behavior cor-
relation analysis is appropriate for investigations of intrinsic resting-
state FC related to adjustment ability. In addition, it should be noted
that some participants had a ratio of Error-Changed trials of less than
75%. Although, given four response options, the chance level was 75%
for Error-Changed, some participants had a ratio below 75%, indicating
that these participants tended to select the previously punished button.
This suggests that a strong stimulus-response association was formed,
even though it was for the wrong pairs. Although the average error
adjustment rate across all participants was 75.79%, the error adjust-
ment rates of each individual participant were distributed across a wide
range, including those in the upper tail of the distribution who adjusted
their errors appropriately with information obtained by negative feed-
back, as well as those in the lower tail who repeatedly produced the
same erroneous response.

The increased dACC activation in Error-Changed trials, as compared
to Error-Repeated trials, was consistent with previous studies that re-
vealed that the magnitude of error-related pMFC activity is related to
adaptive post-error behavior [33,34]. Higher dACC activation in re-
sponse to negative feedback relative to positive feedback has also been
reported [13,35]. Our results confirm that the dACC is involved in
successful error processing, and may inhibit a punished erroneous re-
sponse and promote exploration of alternative subsequent responses
[36]. Our findings also support a role for the dACC in reinforcement
learning [37], suggesting that a negative reinforcement signal, con-
veyed to the dACC from the mesencephalic dopamine system, is used to
correct and modify performance [38].

During Error-Changed trials, increased dACC activity was accom-
panied by a similar effect in another region, the DLPFC. Previous stu-
dies of feedback processing have also reported increased activity in the
DLPFC in response to negative feedback, relative to the response to
positive feedback [13,39]. For example, Zanolie, Van Leijenhorst,

Rombouts and Crone [13] showed that the DLPFC is sensitive to feed-
back information provided for future actions, suggesting that the DLPFC
plays a role in goal-directed behavior. Patients with lateral PFC lesions
are often described as being perseverative, showing impaired inhibition
of incorrect behavior, which might reflect an impairment in behavior
adjustment [40]. Given that negative feedback indicated to participants
that the current association between the alphabet stimulus and their
response was incorrect, one strategy for successful error adjustment
could be to maintain the relevant information, such as their response
and the associated outcomes, and to update or inhibit irrelevant in-
formation based on the feedback. The DLPFC has been consistently
implicated as subservient to cognitive control, such as manipulation of
working memory [41]. Studies linking DLPFC activity to working
memory are relevant in this respect, given that working memory de-
mands increase after negative feedback [42].

Considering previous findings, our results not only indicate a con-
sistent role of the DLPFC in working memory during feedback-based
learning [42], but also suggest that error-related DLPFC activity is
important for subsequent behavioral adjustments. However, inter-in-
dividual variability in error adjustment ability was not correlated with
the degree of dACC and DLPFC activation itself. Instead, the FC analysis
using a dACC seed region showed that increased anticorrelated FC be-
tween the dACC and amygdala is related to better error adjustment
ability. It is well established that the amygdala plays a central role in
detecting and encoding emotional information, and provides contextual
information to cortical regions for adjusting motivational levels [43].
For example, previous studies have identified amygdala activity in re-
sponse to negative events, such as monetary loss during aversive
learning [44], with the level of activity linked to avoiding negative
outcomes [45]. These findings suggest that the amygdala plays a key
role in generating loss aversion by inhibiting actions that have poten-
tially deleterious outcomes [46]. In particular, the connectivity of the
amygdala and frontal cortex regions, such as the dACC, is known to
play an important role in adjusting negative emotion with reciprocal
anatomical connections [47,48]. Anticorrelated FC between the medial
prefrontal cortex encompassing the dACC and amygdala is one of the
features observed during development [49]. Reduced negative con-
nectivity between these frontal regions and the amygdala has been
found in disorders that involve emotional processing and emotional
regulation deficits, including major depression [50]. Dysregulated in-
teraction between the dACC and amygdala may be related to a negative
processing bias, and this will manifest as a defective disengagement

Fig. 3. Brain regions showing strength of resting-state functional connectivity (FC) as functions of an error-adjustment rate. (A) Functional connectivity between the DLPFC and
paracentral lobule (left), and between the DLPFC and an area consisting of inferior temporal and adjacent hippocampal regions (right) were negatively correlated with the error
adjustment rate. (B) The strength of dACC−amygdala connectivity was negatively correlated with error adjustments.
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from enhanced attentional capture and negative events.
The paracentral lobule is one of the brain regions in the default

mode network, which is thought to support a general pattern of task-
independent cognitive resources during rest [51]. Given that the DLPFC
is considered the task-positive network, our results indicate a strong
anti-correlation between a task-positive network and a task-negative
network related to improved performance in error correction. As
greater anticorrelation between the medial prefrontal cortex and DLPFC
is known to be related to better working memory capacity [52], it ap-
pears that variability of error adjustment depends on utility of working
memory.

In addition to the paracentral lobule regions, the strength of FC
between the DLPFC and the inferior temporal region extending to the
hippocampus was also related to individual variability in error adjust-
ment performance. Many studies have reported hippocampal deacti-
vation in instrumental learning [53,54]. For instance, hippocampal
deactivation is related to learning success, and those activations are
negatively correlated with striatal activation during learning from
feedback [55]. The relationship between the hippocampus and striatum
is known to be antagonistic [56], especially in striatum-dependent
learning, that is, in feedback-driven learning, which is similar to our
paradigm. Although recent studies have reported a role of the hippo-
campus in feedback-driven learning [57], the hippocampus may play a
critical role only when feedback is received after a long delay (i.e., 7 s),
rather than immediately, as in our study. Using the FC approach, Pol-
drack and Rodriguez [58] showed that the prefrontal cortex plays su-
pervisory roles by mediating the interaction between two brain sys-
tems, particularly with the negative path from the DLPFC to the medial
temporal lobe. Consistent with their results, the strong negative in-
trinsic FC between the DLPFC and hippocampus in participants with
better error adjustments observed in the present study may reflect a
strong regulatory role of the DLPFC over the hippocampus.

The use of task-based fMRI to identify brain regions involved in
successful and unsuccessful processing, and the application of resting-
state FC using such functionally well-defined regions as seed regions,
are strengths of the current study. However, the literature on potential
limitations of seed-based FC identifies analytical pitfalls that must be
considered (e.g., seed selection) [59]. Because seed-based analysis is a
hypothesis-driven method based on an a priori decision, the results
could be suspect, depending on the specific seed regions. Unlike many
seed-based approaches that are guided by a priori hypothesis, we se-
lected representative seeds that were extracted from task-based fMRI
data during learning. By using a combination of these two approaches,
we were able to address the limitation of seed-based FC analysis.

Finally, a number of studies provide evidence of developmental
differences in learning from error [60–61]. The participants of the
present study were all young adults, so one should be cautious in
generalizing our results to other age groups.

5. Conclusions

Our results suggest that individual variability in learning from error
depends on intrinsic connectivity between brain regions that have been
implicated in error processing, emotional processing, and motor pro-
cessing. Specifically, a strong negative relationship of the dACC-related
network with the emotion-related network (i.e., amygdala) in in-
dividuals with higher error adjustment rates suggests that controlling
the effect of emotion on error processing is an important factor for
better performance in negative feedback learning. More broadly, our
results provide evidence that FC variability may be an important factor
underlying individual differences in error adjustment during feedback-
based learning.
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