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FA7] & 769 71 VENA 548 A4l Wy A Ao siQlate #do] itk
I dEHA Yok B dAFe AE 54 F sUE # dedl AE A2 AlAlbehavioral approach
system, BAS) W17H8 AEe] Aol FA7] T WESD S4T 2L B0 S4e
Aol AT A=A A7) 913 FAHUT, 0% 3k} B HAN=300 25
SRS A A b A ST A Yol BSADL TR Gl A

rulru

2 QHedgod VIESAR T3kl olF E4shy] fsf I o2 7 YESA &
T A8siint. 1 A, 24 Ao #qdta ¢l F3A EHIE 74 o}—
g FY9sd HAEs Tl et A FEberweenness)7t BAS 0] £E NALFE df
w2 A%l gle Ao eyt J8la $ubg Az el FY Al a4 &
&4 2, a2 vl 57}% e S0 BFFC, o] HHAT B 3
T Wl YES A HRANE w& A BT T YolE BaS W] =& )
AAA fRb G539 °ﬂ7§_ﬂ<degree>ﬂ+ AEA

2] &84 (global efficiency)©] ZAaH 43Fo]
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st=dElEElA] s X W=

T o1& Me

Gray®] 73}H17t
theory, RST; Gray, 1982; Gray & McNaughton,
2000 1A A 9 39 PFol o
g 7HEAR]D FH-3E AAL A 7]
walo] 4AL W@ o] oz 47 &

[e2am =1 = hl

3 0] Ereinforcement sensitivity

P

qE T2 PF AT AAl(behavioral approach
system, BAS), 5 YA A A (behavioral

4 =y 4 AA
Hqog &

inhibition system, BIS),

(fight flight freeze system, FFFS) F17F

o 53] Base A 35S F¥se 37
AAZ 23, A, 2 A4 sug As
sk Aol AgkE=, ol 542 ¥
] X}J, E& Aol ofs #Ashso] 3]

%”gLJMS@@@O]J AREE BN
q1§g»%@@ WAL 2o, wAE 2

3 ns
HHH(Carver & White, 1994), E’z}% 3 E35)A
XS W o s¥sta Ao
THCarver, 2004). 3+ %= BAS W
2 ARNE s HA A B
sk 4571 o WEX|THZinbarg &
1998), @714 HAFES FT3te T80l
vkl Ael gAAA S sk Aol Qo of
o]Qo} Tl HAgA E& B FHE 7
T ARHOR =5 9A He Tl= %l
3= W=7} =K Chang, Kim, & Kim, 2013).
ol9} Zo] BASE d(Heubeck,
Wilkinson, & Cologon, 1998; Kim & Kim, 2001),
2 719(Gray & Braver, 2002) °]¥Jo= T

344 AAA

2
2002 HAE A, wASAH A0 2
A7 Aol(Yi & Hwang, 2015) 53 #H#o]
o A ik

B 7z

B dToAe o2 BAS

A 2ol FHef 753 vEYA 549
A= Aol AL Aol A,
BAS W1ZHd o] ZQiAtelol whe} T o] 7]EA
HEYA SH0] o= T+ FHolA ogA
e =AS 2ARILA ST kAo R
BASS| T AAM=SHE TIAREs F9
NAco)oly  tepd 4
(orbitofrontal cortex, OFC)3} 0] A AA A
Al(mesolimbic dopaminergic system)©l] &3 =3}
Udd 5 ggse] T aH"En
(Pickering & Gray, 1999). °l& T3 ¥A <]
A=) LS g9Edo] B3 #de ¥
< FEee 72 A4 71Ar] Wit
(O'Doherty, 2004). S £, Y23 B

-‘74711 g9

Apzlel diE &=

tegmental area), NAcc, OFC 5% Z& T4 9§

o) B3 2} BAAAL o T o
xo

=9 %Wﬁ‘r #%% BAS RIHAC] £

gzt olehe

(nucleus  accumbens,

22 & (ventral
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Yan - N8 - 2% / BS N2 AMBAS) LS BA| Frlel 715K HEYS: 1HE-0|2 24

A3 FFo] ZS B ol TSimon et al,,
2010), B34S A3t S E NAceH OFC
9] &A3l7} = THHahn et al, 2009; Simon et
al, 2010). B4 #H o o= Huk
BAS W17 #H-o] QlFo] AAELL

(Harmon-Jones & Allen, 1997)°]4, fMRI 21 &
FFATI EFHE; fractional amplitude  of
wjEolth

low frequency fluctuation)S }.0]7]

(Jeong, 2016).

WHER EAAZ #
=79 HH

AL st T A4 AAEL e
a7] Slal, AAFAAD BAjol e
etd west 44 54 7ke] BuA

&
ox
i
o
=
Bl
i)
[
0,
N
2
ro
O(z)(:!“
oift
[
2.
4
tlo
=

T o™ —T'0ouu
HATa olsl BAR AAHA T SHL
A 2ol 4R B AT AT
she Eabael WHY Zeltt Hua ¥ug

S Bk AINBarros-Loscertales et al.,
20067F 18 ootk HIZdle FAY] F¢t
2% 7Y A FAGE MRI(resting-
state MRI, rsfMRDE £41 3k, BAS RIZH %
B A Y, NAc, OFO°IA FA7] 5
AU BE| By o] B 3]

2-0] Q1% THHahn et al., 2012). ©] Ao

A BAS TAo]l =& AYFE NAccs

A Az APHOE

o 7
—n
i
e
[
a1
o
k=
)
e
[z
oX,
I
u
oX,
o,
N

De= AAkshs Adtelt.

714 dEelA 54 T 999 &F A
oj¢} #Hol & AL 1H & F 3
d

o g = 7)uk AT (Watts & Strogatz,
1998 Agstth o] WHE A A AAY

EEG)Y| A&H= et 11
He HESAE = S(node)oh
gt AA(edgo = TAHH
Mdstste], #ARe] 4 44 A
A oaEst & 5 due Aol & AF
(Bullmore & Sporns, 2009; Olaf Sporns, 2014). <]
£ 50, o 7S FHoIA ol AT
A Agel AgAs W, A FH UES
e =4 g AEAY Ze43% e, U
EIEs FAske ME =EFHY =4
Fehee 7153 UEZ EAC, degree,
clustering coefficient 5% T AHE F 9l
o olE Tl A 22 529 MUAet

e 5
#A4E A= UEHZ T olyZhvan den

Ix

i
to r
M o 2 m
4 =2 o ry

o
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st=dElEElA] s X W=

Heuvel, Stam, Kahn, & Hulshoff Pol, 2009), =3}
oF 2 g FAdlAM o VEYA M3kKim,
& Choi, 2016), THgeF AAl Aol =3,

T:oA Yehes 7 UEYI WA W
3} FFE oldlE 4 YA THLynall et al., 2010;
Tschernegg et al., 2013).

SEERINEEX EISECE SR P
29 A2 HA) 44€ olsiahen oA ¥
252 dolry] 93, okEE FEI} o]
g E9 917 Aol HZH AFE op)
| Az el sl 2a
) 315 cﬂ%

clustering  coefficient(:F]  AlEhe Aol
25 dgo]l BEEATHLynall et al, 2010).
clustering coefficient= 54 73 {4 2=

2 Ty 9950l Az dohy & 4=l
NEAT LAFE ASTA, ol Ashe

el ?i%fi Ty godoA] @YW IS0
AR A £40] FAolel| HE| MurHo =

A3E AHE 2od £ WE D} 27
S50 A8e ANBHE Aol E OE o
L‘]E-“?—]ﬂﬂ]/\‘] A} OJH(hlgh degree hubs)i

?W(Lynall et al,
Ae HES A 54
L w9 AAA FFEE NHYSl= degree2t
s 7 e, AR xE AR dY
B A Y EQ F(default mode network,

DMN, Anticevic et al., 2012)°] EEHT 1 o

AAE Tl T g

A 0z AR 28y BAS A9
degree} clustering coefficient |57} A4
Hlsl| wthe= o] AZEUTH(afri, Pearlson,
Stevens, & Calhoun, 2008). °]= Z¥W A=
< DMNO| &= T dYSo] st
AAsel UA TRk A
SE, T NS AER

o 289 A= ¥ eyt

L)
r:i 4

S, NAc, OFO°IH B & 2l
E A A Y5 (goal-directed behavior)oll T3}

© 74 99, ddF 94, Niendamer al,
0142 YEYT 243 BAD FsAHL d

2317, o8 AZzea

A stk

¥

ZIIRE 3089 2
2203 = 1.99A;
ATl FHAsi) o5 B AW I=
W Stedt BEE FA7IE MMRE A TH(Kim,
Kim, & Kang, 2015% 93] ZHIALG. ZE
PP AF Ao, AN R AP
B2 1 A == FA dEH e F
P HHI AAjol Uit AHS 3o o
2o AEeR FoYrh RE FAe]

23] USACEE
@ 1, e el B
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g

3 - Z2% / 43 82 AA(BAS)

Qo FAPV| Tl 7|88 HEYA: J4Z-0|12 24

BAS WIZAL =moj® WM BIS/BAS A&
A(Kim & Kim, 2001)5 A3t H7kE ATt

A B7bE MRI 270 3)7] 1579 Aol o]
Folxth. ol F ofug IEAE A4l
HEE BushA

= MRI 974
< uHstn HPY AEd U= Siemens
3-Tesla Z:?HL‘](Erlangen, Germany) = 2=
o BEE WHAERRE dddE )5St T1
4 AHMPRAGE sequence; TR = 1.9s, TE =
2.52ms, isotropic  voxel size, FOV =
256mm, 192 slice)?] FFH Fof] E A9
24 A8 FAGEH 39 (resting-state

2000ms, TE = 30ms, FA = 90°,

Imm

fMRI: TR =
3mm isotropic voxel with lmm inter slice gap,
FOV = 240mm?’ 36 slices, 254
acquisition)©] 8% 24%0] ZAH FHEHYCE o]
MRl AR7F FHEE §¢, HES
< 4 olgstH, Aol e AHE FAS
Attt A 3 v T

AH HESZ &40 e VA 7Hsde
i AE7] A3k Sun et al, 2017), ZE A
9] MRl B F52 sFSH 7 ZF
2] %o utz AlAbE o], FAl-7]RE MRI A Gl
A== a3tk
94 Az
7] 8l FYEE 71EHA HA = sPMs
(www.fil.ion.ucl.ac.uk/spm/)
A, g B o 9 olnAE ALt

st} Mg $4YL FAT F, oI

volume

2 24

o
oft
i
)
2
O,

02 HH(realignment) Y Th MRI A&7} o

o w2 == 7] "o, 7t

2= v &4 Y<S frame displacement(FD)

71" (Power, Barnes, Snyder, Schlaggar, & Petersen,

2012)% o]&3sted ALk D > 0.5mm$l F

MRS BAYA Atz gom, gl A
S

3 A9 7)1ELe xHE= 5 vg £=9)

e HY WPIEES Ui 2githu =
0.02, SD = 0.01, range: 0.013 ~0.047). =3

an

FDE BASY BISYF 22 474 SAHAY=E A
e Holz| AJTKBAS: r = 0.16, p > .05;
BIS: r = —0.16, p > .05). &3 ¥2|Yo]
BAE Hgdel ds] ¥ = 9d =
Aol wWe BOLD Al&e] Aolg HASE=

r

2K slice timing correction)’} A-EH AT 31
4 A7 mAgol olRd Jls 94 ARE
< s el wHH o ol I3+ Bt

317} HE8H Fresampling voxel size = 2mm),
B3t He FWHM = 6mm)7} ©]HH
a2al Ak d190.01~0.08Hz) 9 Al
of 24& YFE MR AR F71HF
1212]E <¢lsl, DPARSF
rfmri.org/DPARSF/; Chao-Gan and Yu-Feng, 2010)
£ ARESITh AAE AEe A e AA
3171 Y3l Al A A(detrending) 7 A -E-E AL,
Y 53 ZE(band-pass fileer) S F3] 0.0134
0.08HzAF0] o] Al&wRhS —%%‘3}951‘4. npA ek
2 39 Bxe #2492,
B A A

o] &l HF £l

ol

©
rN

toolbox(http://

HE/NI 74 & d79 A A7l
gk A T vEIZE F e @AE
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SI2AIZ|EHE| K| QK| Gl M2

~ o

A A5 AKSupplementary Figure 1a, 1b).
AR, VIEY A 74S Y8 BRd weE|R
S B4 d95)° 44ES #I5kel, DPASRF
toolbox®ll A FEH = NETH T A E(atlas)
Harvard-Oxford atlas(Kennedy et al., 1998; Makris
et al, 19995 AHSt] FHE 112709 99
< T2 THSupplementary Figure la). Harvard-
Oxford atlast= 73 FAAE 96719 ¥4 G

21670 A F9er FERs 72t ¥Y
of g sjEstA HAS AFdrhe A
o] t}. E3| Harvard-Oxford atlast BASS] &
A A7 AEZ THEE NAcE 2338H7] o
oll, & A7y FH JEYI 74E& {3
AEEAT A4, 4 =E=E F A112X112)

itk rsfMRI AJAIE 2159 Pearson A Al
7b AEEY. O e, mECEH )t
AAEEE T AAE A9 dhE 749
FH PP A=A

HES D £4 ALtd Zadd S o] 88t
o] GRETNA toolbox (www.nitrc.org/projects/gretna;
Wang et al, 20159 =< o} Z3P= AT
WA, Z42e] 4 PP ERE A o)zl
Y E ] F(undirected binary network)ES T3 IATh
(Supplementary Figure 1b). ©] B33 U ES)
e AAe B & Y3 d™e HE

2D ATV FA B¢ T
AAY A5l AT AGE TEse] F
o 94 ong wefke FAol ol
WEYZ] AAZ 03} 19 FEshs AR}
£ 4B AZel ek EAE Relstel vE

A5 FAskE AAkel vngs uf AlTto]
Zotet= Romn, A o= Z
zto] 7} Rtho. Sporns & Betzel, 2016). 2154 =1
o8 YELA 79 HAd &4e FH]
A RS AR JNFE FLEA g
© AA7F FHEHAT s-MRIS] AAE 4l
ol A ALFE Pearson AT AT ool o
g U EZE T8k 4F, A A7t
A7 mg E2A AEEthe HERC
ARE st SAsiA, FrAErit &
3k A4 WX T(connectivity density) =0l
wg} AR E ALY dE S0, 499 92
W AREE AR A, 112718 ==
2 749 HEYZNA A2 7hs3 HA o
AC, = 62167W) F 4%2497W)7ke] AZ = o]
Je T HEYAE A8, vESNA S

AsksA ftt. 947 U E A9
= A7 wet 2 AFo] J=Hl(Tschernegg
¢ al, 2013; Wee et al, 2014), ¥ ATFolA=
2E 7S dlsl 4~40%(7HE: 2% A
A% YREE A8, 4 2= min

et Be WEYI ZRNES AN

oJxe]

o

i

e

] ;2] =

o

AdE YEND 247, T e
£4E Uehie vESa SHA=
< =3 Ze #ol A=EHUAY: normalized
characteristic path length(87F3kel £ A=
A, N, normalized clustering coefficient(7d 713}
H FH A, v), small-worldness(ZH A4 )
Efae] £4,
length®} normalized clustering coefficient= ¥

ZE YEZY characteristic path length$}

0). Normalized characteristic path
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characteristic clustering  coefficient S 2
ARE HESZA Kol 33 Hlasko
I AE blEs 4hEe 2108, Jukd
ZH2 A MESZY EAS Hole 74 U
EQA A AT 10 28, y= 1Rt 2
Al AFZFTHWatts & Strogatz, 1998). & ©] =
AAEL 1Y T HEIAA FHEL
2 JdZ2" YEIRYG ZHUT AYEE uf
xof sh= AR Hololl= Atol7t AN,
ARE 71%E @3ste T d9Ee] #3s)
Sl

o} z25o] A

S

il
€ 2% UIE FF} characteristic path
length®} characteristic clustering coefficientE 7|
e & FdE fee ki A= 74
d HEHZ 1w07hE FAHeR Adsta

O|ZRE] A4  characteristic path length®}

characteristic clustering coefficient®] HoS AME
S, 0 BEeE A AR RS P

THRubinov & Sporns, 2010). UFAH O 2 small-
worldness(0)°| & WIESIZ 72| 84S 1
ok Aot oA AFRol, e A4
HEAI:s 74 IYmodoEe] Irhdt E&
Hoz FAso] 2HHol EAE ofn@
o @2t o FH UWEYZTE dustering
coefficient’} =& WA path length7} 2
548 Avh} nol=AE Hrkshs Ao
W, characteristic path length t¥] characteristic
clustering coefficient®] HI&E ALt o] &
kel ATAE AololA o7} 15k AR AL
A dENZS S48 Uehinn B
(Watts & Strogatz, 1998).

T23 YEYZ FHA.
Eqa gy =
UEZ ZSBAZE degree(Ar), clustering
coefficient(- R A7), characteristic path length(5
AA A= A, global efficiency(A¥HE &
&), local efficiency(mr42 EE&A), 18
betweenness(7} 71 9t}
degree(ZHPHS, 3+ =7} 2k Qle dAY
N, & & =29 AAH e ol =&
of & UEIATE 2 degree T =
08 =553 go| d45o] itk
w) sl Clustering coefficient(+3  Al<)
shte] o] Eol ME drfy dAFo gl
A, e FAsteAd dE ARE AE

1

F44) 5 wEo

o
H(—

o
o =2

ol s dZ2H Uee
Characteristic path length(53% AZ A=
g ol Hshr] fsl AAF = path
lengthgl YHoE YELIS AR B 5
o =ZaAds #E e AEOITE Global
B4 Hd A9 path

: : =
clustering coefficient= =7} &3k

Mo

A WAEE WA, fault-tolerance)
o thet ARE A|FTFE= AEZ, E2 local
efficiency= 3G =E9 dAH Uy T4

HES ] AR Hdo] Ao o]FA 1L

AHAE W, o]L3lE EEE TAE HE
=27 v} 528
A=7tel gk Aoz Faz
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@7 FAAE HEYIR EAcs BE
A A2 F g =88 AXE A2 4
i E2FEHEARE AT ol =27 |
3 gk AR AR Ao 9ol rlA=
S WYsts SAXZ, =2 betweenness

wE7L YESZGA F3 1 A%

to [ of
ol o ogt
oft oft
[U.?‘J

NS

or

ox

tlo

>

2:;

o

O,

o

2|SEAA, path length®} global efficiency™

A HENZNN BRE FE 5YL,

clustering coefficient®} local efficiency= WIEY A
oAx =aF FEAdA AR AHZshs s9&
Wgske UESE SAX| oItk Characteristic
path lengtht} clustering coefficients HHHE &
Lo A o WdE SAHRCIARE global
efficiency 9} local efficiency= ©]o Tl g3
o7 st Aol &HA SUthAchad &
Bullmore, 2007).

A =M

o= EE

]

Hell 749 7 MEQIE o
A7 SOl FYE A dA
AAY WAST4 ~ 40%, A

s A T UEYIE TAA

ety ZA7pAboi 197]9] dAW "R 4

Zo Ao WEYA ZAHRESo] AU

A, 2 A7 e 7 HEQATT

small-world network €4S Hol=A F<l3}

7] 98, 2 924% WA FEo dis)

normalized characteristic path length(\), normalized

i o> ofm

N E=

clustering  coefficient(y), 1831 small-worldness(0)
frol 22 Al UE A ddEHE ga
~ 1,y > 1; 0 > ) Ho|=x AR}

A BAE FASId BAH, AhAmiT

g
AW, Fad END SN I

™MZ(area under the curve, AUC)S AAHITH
(Supplementary Figure 1c). ©]= UIEQZ A
A5 A% YRS 2 Fdsta, 1
B4el WAS AdeE o o o
o AEe dus Fud A [
MESD 2AAE 4E] A AEH
WHH O] T Tschernegg et al., 2013; Zhang et al,
2011). vpAEte. 2 HNbE 2 Z4F U ES
A FAAuT 4EE AUC @ ARESe]
BAS, BIS ZAA9 4T BAE BT
(Supplementary Figure 1d)D.

dH B4 O 2 AR FYEH
th WA, JA 1127 == bzt dis)
A U EST ZA4A¢ BAS WA It 4E &
e FHIT ol tF Hluz U3 1
LFE BAAF7] $18l, FDR(false discovery
rate; Benjamini & Hochberg, 1995) A p &k
< 2ES p < 058 2 ATES
TSR o9k HEe]l B AT FEFo]
BASSH o] Q= T UESAY EAHS
gaHor duEEs ZoIl7] el A
A FoEE ASol off AE k='e i
2 e 28WE©, p < (1/112) = 0.009;

Lynall et al, 201002 A& o, o] o &

e o m

ofN

) B ATE BasY #H SlE UESA EAHE
AR 23S wEed, AsaAel
= OE 78 44 54 F il BsE 34
g A o83t 84S Y B4 A

o = -
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3| Z2% / 43 82 AA(BAS) BZgn RAP| F=of 718N HEYA: J2Z-018 24

WAPE 1T LFE 4K FAAE X
3 =3 A EAelA
EXHoZ FF AMFTKLynall et al,

2010; Tschernegg et al., 2013).

B HEST X 2o 2ot 2 97
F7AZAE A
¢ eSS 54
HAuok s AAZRE AdEE T
HESIE, EE
NECERge
2= v T
Supplementary Figure 22), w33 HA=E F4
UEL S Hg) =2 Ay > noE Ueky
ThSupplementary Figure 2b). 22 A% HES]
o gk ARE AHEGS W WiAE
o %3 WEA} small-worldnessc > 1DE
Holz ZASZ YENGTHSupplementary Figure
20).

9] ARE vtk AvH YESA FAXA

(0, A, Yt FASEAAUOZS A& &

Mo o X
EY

=

M B

HEHZ FHAEC] wble 10 AA
o WA, R TAEE A4S W FHY
ek AFE WEYT ke A3 FR A
2ol Qo] B =T AR FTEL W
SF= betweennessOll A BAS 529 7j<l

47 4w APe Holt T gyom
left nucleus accumbens”} A HATG= A o]
THFDR-corrected p = 0.051, Figure 1). a4 3
right supracalcarine cortex(-F-¥H 2 A I A)

9] clustering coefficient”} BAS®} F& F-S

e HoFe Aot

F/HHO 2 Lynall 9 WAHE HLIPS

Table 1. Brain regions showing significant correlation between the network metrics and BAS

Brain region Network metrics Correlation Uncorrected FDR-corrected
coefficient p-value p-value
left nucleus accumbens betweenness + 0.60 0.000 0.0510
right supracalcarine gyrus clustering coefficient — 0.61 0.000 0.0448
local efficiency — 0.56 0.001 0.1232
betweenness + 0.54 0.002 0.1007
right superior frontal gyrus degree — 051 0.004 0.3920
global efficiency — 048 0.007 0.7280
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L 021 50 T
5 0.19 . r=+.60
4 o o L] 40 4
S 0171 2 * .
& . 4]
[T} 4 H c 4
S 0.15 . o":.. o o = 30 ”
O (.13 . . ® .
¥
c 011 ° . ".'. EZO- .
L]
go.og . 310_ et
3 007 * . I
o r=-61 IR
0.05 — 0 2 .
25 30 35 40 45 50 L 25 30 35 40 45 50
BAS BAS
0.21 10 =
° r=-51
o o . 8
‘:’ 0.18 .
oo .
8 015 e g 6{ ., .
= . S % o . .u_o .
b o ] LEPIY "
Y oo12 . o 41 .. o
3 e e a
(=] o ]
= 0.09 4 superior frontal gyrus 2 ° * .
r=-.56 0
0.06 — y
25 30 35 40 45 50 supracalcarine cortex 25 30 35 40 45 50
BAS BAS
40 o 0.15
r=+.54 " ! a o . r=-48
>
9 30 g 012 . .
g . K 1
g .« o 2 009 oo, shtep e
g 201 b .« T
3 . . = 0.06 ¢
@ . * 2
= 19 * 2 e ot & 003
. g © 0
°* o
0 g% o, 0
25 30 35 40 45 50 25 30 35 40 45 50
BAS BAS

Figure 1. Brain regions showing correlations between resting-state properties and BAS

score (NAcc = nucleus accumbens).
* = FDR-corrected p ( .05, ¥ = FDR-corrected p ¢ .10.

o Fofugt g AdE AuEsT o] ARE HA FH UEHIZNAM HE FH I
ANE Aides 15 79 FAF 44 Holl miAe Ede 238 Ade S Ko
ojFZ A7} obde FHESoF ok B4 Fe Aotk =Y fHbe] AFHPY =4
A3} right  supracalcarine  cortex® Al local  UEYZ EAo] BAS WA =2 MNALST
efficiency7} BASS} -2 kg HQ whA &  F W& Zo=® UvhHTh BASS AHo] e
T B9 betweenness$t BAS v A A +F ST FHOE right superior frontal

fe=]
o I
e B3eH, ol =2 BAS WS Hol  gyrus(PRH AAAFI)F BHEJE, o] ¥

= MASAMAA o] AlZE FYo] o] Y5 FL &%
% o, }\f

T2} AP Qob EEHolA 2

i)
re
o
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3 - 4l - Z2F / T H2 AAH(BAS)

Qo FAPV| Tl 7|88 HEYA: J4Z-0|12 24

Sl= global efficiency 7}

& AT BAS WA FA7] £ 7]
A UESZ SAFe] #EAdE ARG
1A B AEe A B4 7)s, 2Ea
Azt AEE Fdshe T @94 FAI
UIEH S 91742 540l BAs WIS} A&
S BAFQY. 7P F5E
b ARs FH NAcolA Fi Y EY T
ol betweenness”’} BAS WA AHA
ol 2] WA el
711:,5,0 o] &3t o]d AT A

TFolMe BAsel FEFE wF
b7 el %l:: NAcc®| HES 9] £A4
betweenessBh= o] T ERIFUTE ThA] ws
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Behavioral approach system (BAS) sensitivity and

functional brain networks during rest: graph-theory analysis

Hojin Jeong™” Jinhee Kim" Eunjoo Kang”

"Department of Psychology, Kangwon National University

“Department of Psychological Forensic, National Forensic Service

The properties of functional brain networks during rest are known to be related to individual differences
in cognitive processing or psychopathology. Here, we ask if a personality trait, the behavioral approach
system (BAS), is based on individual differences in neurobiological substrates, namely those of the
resting-state functional brain network. Resting-state fMRI data were acquired for 30 healthy, normal
participants during rest, and brain networks were analyzed using a graph-theoretical approach in which the
brain is viewed as a network composed of connections (edges) between brain regions (nodes). The influence
of the left nucleus accumbens on other brain regions (quantified by the metric ‘betweenness’), was found
to greater tendency in those individuals with higher BAS sensitivity. High BAS sensitivity was also related
to a higher tendency for global information processing in the network, rather than local information
processing in the right visual cortex, as indicated by increased betweenness and decreased clustering and
local efficiency. Finally, Higher BAS-sensitivity individuals also showed tendency of decreased connectivity
(‘degree’) and information processing efficiency (‘global efficiency’) in the right superior frontal gyrus.
These findings suggest that the differences in brain network properties in the nucleus accumbens, visual
cortex, and frontal cortex are related to the greater reward sensitivity, high novelty seeking, and greater

impulsivity in high-BAS individuals.
Key words : functional brain network, graph-theory analysis, behavioral approach system, resting-state fMRI

- 124 -



3| Z2% / 43 82 AA(BAS) BZgn RAP| F=of 718N HEYA: J2Z-018 24

a) b) c) d)
Nade 1| i Aabyis 5 2.0
Node2| 9 b
Node 3 [\ alriodlh, s =
9 % %1-6 1 8 o
Nodeﬂ W‘M\M " L ¥ £ o :":. .: ¢
A 4% ° 2 o MR Y
. g 312
(7]
e z 2
T, 08
s P B 0.04 04 27 32 37 42 47 52
4 Connectivity density BAS

Supplementary Figure 1. Flowchart for graph-based network analysis. (a) 112 ROls were
defined based on Harvard-Oxford atlas. (b) Network metrics were calculated after the
binary network matric was constructed for every connectivity density (0.04 - 0.40). (c) The
area under curve (AUC) for topological parameters of graph theory were calculated for
group analysis. (d) Relationships between those topological metrics and BAS scores were
assessed using correlation analysis.
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Supplementary Figure 2. Small-world properties of resting state networks as a function of
connectivity density. (A) Normalized characteristic path length (A). (B) Normalized clustering
coefficient (y). (C) Small worldness index (o). Error bars are standard error of the mean.
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